eSteam™: a cost-effective, carbon-free renewable energy solution to decarbonize your commercial building

Commercial buildings represent the highest source of carbon emissions in major cities, making them one of the most important targets in urban decarbonization. eSteam™ is a unique solution that can address this challenge head-on and inexpensively decarbonize healthcare, life sciences, universities and commercial buildings with ease.

Accelerate decarbonization with eSteam™

Vicinity’s renewable thermal energy product will help you accelerate the decarbonization of your building and our communities. Our solution is turn-key. 

eSteam™ reduces the need for you to invest in new onsite energy infrastructure to meet your sustainability goals. By connecting to the district energy system, you eliminate the need to make significant investments to decarbonize your building’s thermal energy load—we’re doing that for you. Vicinity will leverage and build upon existing infrastructure, including our existing network of steam pipes, electric substations, and transmission lines, and deploy the capital needed to rapidly reduce our carbon emissions.

For our cities, Vicinity’s eSteam™ provides a way to cleanly heat and cool urban buildings—reducing the need for natural gas boilers that create unregulated gas stacks and unmonitored carbon emissions—improving overall air quality in neighborhoods.

eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering maximum flexibility and superior environmental benefits.

eSteam™ benefits:

  • Carbon-free – eSteam™ is carbon-free, so you can meet your sustainability goals and avoid looming carbon taxes.
  • Total flexibility – You nominate how much eSteam™ you want annually and select the renewable electricity source to generate your eSteam™ based on your budget and sustainability objectives.
  • Affordability – eSteam™ is the most cost-effective, affordable option to green your building compared to alternatives, like electric boilers in your building. Vicinity’s access to transmission level rates gives district energy an economic advantage over onsite equipment.
  • Avoid carbon fees and fines – Many cities in the U.S. have implemented or are considering laws that will lower greenhouse gas emissions in buildings. Oftentimes, these policies will carry hefty fines for non-compliance. eSteam™ is guaranteed carbon- free, giving you peace of mind that your building will be green, without costing you more green.
  • Maximum reliability and resiliency – Join the many customers who choose Vicinity’s district energy heating and cooling products for maximum reliability and resiliency.
  • Low capital investments – To access the benefits of eSteam™, you don’t need to invest in costly capital projects and you can avoid expensive building retrofits. Decarbonize your thermal energy footprint by simply connecting to Vicinity’s district energy network.
  • Certifications – Gain potential points for LEED® and ENERGY STAR® certifications to demonstrate your buildings’ commitment to sustainability.

Customers benefit from carbon-free eSteam™ generated with renewable electricity.

How eSteam™ works

By installing electric boilers at our central facilities and procuring renewable power from the grid, we can offer carbon-free steam to meet your buildings’ thermal energy needs. Vicinity can purchase renewable power on your behalf—such as wind, solar and hydro—at transmission level rates, allowing us to keep your costs down.

Coupled with other technologies like industrial-scale heat pumps and thermal storage, our goal is to offer you the most affordable, flexible thermal energy product that lowers carbon footprints, improves air quality and meets sustainability goals.

Vicinity’s eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering you maximum flexibility and superior environmental benefits.

Lock in with eSteam™ today to decarbonize your buildings and avoid looming carbon fees. To learn more about eSteam™ email our energy experts at

2023 Cambridge Chamber of Commerce Visionary Awards

Vicinity Energy has been recognized by the Cambridge Chamber of Commerce for its commitment to innovation in the launch of eSteam™, the first renewable, carbon-free thermal energy product in the United States. Vicinity and IQHQ team members talk about the impact eSteam™ is making in Boston and Cambridge in this video highlighting Visionary award winners.

District energy in a climate-uncertain future

With climate change and its clear and present danger upon us, communities must act to embrace resilient energy infrastructure and prepare for a future in a very uncertain climate. Extreme weather events, like the unprecedented cold weather in the midwestern and southern regions of the United States in February 2021, and Superstorm Sandy in 2012, have devastated people living in these areas, presented major challenges to the nation’s energy systems, and driven resilience to the forefront of national conversation – not to mention the extensive financial response required to recover from these events.

While pursuing new energy technologies and solutions is critical to our eventual success as a society, we must balance this future-looking approach with an emphasis on strengthening existing infrastructure and cost-effectively protecting citizens and current energy networks. District energy is a proven energy delivery framework that is resilient, affordable, scalable, and already utilized by grids across the country. With underground carbon steel pipes, insulated and encased in concrete, and fed by central energy facilities, district energy is, by its very construction, extremely resilient. It has the added benefit of enabling a rapid shift to renewable sources and other green energy approaches. Based on these key attributes, district energy is a key component of the solution to our climate-uncertain challenges.

What we’re up against

Since the 1980s, there has been a significant increase in the number and severity of U.S. power outages due to extreme weather. February’s unprecedented winter outages in Texas are just the latest example. Millions of Texans were without power or heat when about half of Texas’s electricity generation was offline. As a result, fuel supplies were slowed by frozen natural gas lines, some towns had to turn off their water supply, and carbon-monoxide exposure skyrocketed when many Texans turned to home generators to keep the heat and lights on. Last year was a record-setting one for wildfires, with over 10 million acres burned nationwide, leading to $20 billion in costs and damages. A decade ago, in 2012, Hurricane Sandy left much of New York City without electricity for days, in addition to causing flooding that shut down power plants and fuel refineries. 117 people were killed, and 8.5 million Americans were without power.

In addition to severe disruptions of everyday life and threats to the health and welfare of residents, these events are costing Americans dearly. According to the National Oceanic and Atmospheric Administration, climate disasters have cost the United States over $1.875 trillion since 1980. The United States cannot afford to continue to operate such vulnerable utility infrastructure, especially as the situation continues to escalate. Americans are paying in tax dollars, and – more importantly – in lives, every moment that goes by without the prioritization of resilience in our nation’s energy infrastructure.

Many communities have already officially recognized the need to put energy resilience at the very center of civic planning. For example, in 2020, Maryland launched the Resilient Maryland Program to fund innovation around energy resilience and distributed energy resources. The Massachusetts Division of Capital Asset Management and Maintenance has a specific resilience program in place to protect key infrastructure from the effects of climate change. And last fall, the city of Philadelphia hired its first Chief Resilience Officer; someone whose entire mission is to ensure that the city’s resources can withstand the impacts of climate change.

How district energy models resilience now

While acknowledging the problem is certainly the key first step of progress, and research toward future improvements is more than necessary, what can communities do right now to protect citizens from the climate disasters that are sure to come at an increasing rate? One solution is district energy.

District energy uses a centrally located facility to generate thermal energy – heat, hot water, or chilled water – for a number of nearby buildings that form an “energy district.” Microgrids, such as can be found at colleges, hospitals, airports, and office parks, are examples of district energy arrangements. District energy offers multiple benefits to its users, including freedom from asset ownership and maintenance and corresponding costs, and price stability. Most important to this issue, however, is that district energy provides energy islanding capabilities that offer far greater resilience than broader-reaching conventional utilities.

For example, during Hurricane Sandy, Princeton University relied on its own microgrid, allowing the university to maintain power and resources while the rest of the city was offline. In fact, Princeton was able to offer emergency workers and the general public a place to warm up, charge their phones, and access the internet, since they were not reliant upon the town’s non-functioning energy supply.

How is district energy so resilient? One major factor is that the generation facilities are often located in urban centers, within or nearby to the grids they serve, as opposed to energy needing to be transported over hundreds of miles from a major power plant. These microgrids can then operate autonomously, even if those around them are without resources.

In addition to proximity, many district energy systems are able to ‘blackstart’ – that is, they can restore operations independently without relying on an external source to recover from a shutdown. Because of this ability to island and blackstart, some district energy systems have upwards of 99.99% reliability, making them desirable infrastructure in an increasingly climate-uncertain world. In fact, many major American military facilities, including Fort Bragg and Andrews Air Force Base, operate on district energy systems due to its superior energy resilience and security.

How district energy can contribute to a greener future

In addition to helping protect communities from devastating climate events right now, district energy can help pave the way to a greener future, in which global warming is addressed and the effects of climate change limited, to help reduce the number of climate-related disasters to begin with. Here are some key ways district energy helps reduce carbon footprints:

  • Reduces primary energy consumption for heating and cooling by up to 50%
  • Many district systems integrate Combined Heat and Power (CHP), which has an average efficiency of 75%, compared to 50% for traditional generation methods (significantly offsetting carbon emissions that would have been emitted through conventional means)
  • A diversity of buildings (such as commercial buildings with daytime use and residential buildings with more evening use) in a district can lead to waste energy sharing and load balancing
  • Central district energy facilities can be easily electrified. Once switched over to new renewable fuel sources and/or technologies, all buildings that are part of the district system will benefit from the carbon footprint reduction instantly, since they are all connected to the same generation facility

Fortunately, the world is catching on to these benefits. The United Nations launched the District Energy in Cities initiative to encourage urban centers to take advantage of the greening power of district energy to help reduce cities’ carbon footprints and thus their contributions to climate change. Campuses, hospitals, and research facilities around the country are already relying on district energy to both meet current energy security needs and to do their part in working toward a greener future.

It’s not always the case that the technology that can help us stay safe now is the same technology that can help us move systemically in the right direction. In the face of a danger as pressing and dire as climate change, we’re fortunate to have that present and future solution in district energy.

BNN News Interview with Matt O’Malley Vicinity Energy

In this interview with Boston Neighborhood News Network host Faith Imafidon, Vicinity’s Chief Sustainability Officer Matt O’Malley discusses how eSteam™ is revolutionizing district energy by providing steam with heat pumps and electric boilers, rather than cogeneration or gas boilers.

Boston Mayor Michelle Wu Kicks off Vicinity Energy’s electrification plans

Boston Mayor Michelle Wu helped kick off our electrification plans with the deconstruction of the steam turbine at our Kendall Green Energy Facility, paving the way for the installation of our new 42 MW electric boiler.

This monumental step forward accelerates our efforts to reach net zero carbon emissions and offer carbon-free eSteam™ to our Boston and Cambridge customers.

Could steam heat, long used by cities and colleges, be a solution to climate change?

Could steam heat be a solution to climate change?

by NPR Radio: The Morning Edition | October 2022


Beneath the streets of hundreds of North America’s oldest cities lies a network of pipes delivering steam heat to office buildings and hospitals. These steam loops could be a clean energy solution.

The Morning Edition of NPR Radio discusses Vicinity Energy’s district systems as a valuable tool to decarbonize cities at scale. Susan Phillips of NPR member station WHYY in Philadelphia reports these steam loop systems could be a climate change solution.

About NPR

NPR is an independent, nonprofit media organization that was founded on a mission to create a more informed public. Every day, NPR connects with millions of Americans on the air, online, and in person to explore the news, ideas, and what it means to be human. Through its network of member stations, NPR makes local stories national, national stories local, and global stories personal.

A pivotal chance for Philadelphia’s climate future

One year ago, the Schuylkill River had just normalized after rising to catastrophic levels following Hurricane Ida. The ensuing floods that swallowed up the Vine Street Expressway, ruined homes, and businesses, and took multiple lives, provided a potent reminder that Philadelphia, nestled between two rivers, is uniquely susceptible to the impacts of extreme weather resulting from climate change.

If nothing else, a look back at the historic flooding should serve as a reminder of the need to advance prescriptive policies at the local level that curtail the negative effects of climate change, reduce greenhouse gas emissions, and protect Philadelphia’s health and infrastructure. The recent Supreme Court decision undermining the EPA’s ability to regulate emissions on a national level amplifies the need for cities like Philadelphia to take charge of their climate futures.

Thankfully, Philadelphia has a policy road map in place. In 2021, Mayor Jim Kenney and City Council made a “net zero” pledge to achieve carbon neutrality by 2050. It’s an ambitious goal that’s drawn support in other cities such as Boston, New York, and San Francisco. Coinciding with the pledge, the city also released a draft of its Climate Action Playbook — a blueprint of data-driven recommendations and expertise to suggest ways to reduce climate change’s impacts through an equitable and inclusive lens.

During Climate Week NYC 2022 and Global Clean Energy Action Forum in Pittsburgh, we want to spotlight Philadelphia and cities around the world that are at an inflection point for environmental progress. While municipalities need to look forward to innovations and policies, there are also existing programs and technologies that could be better harnessed by individuals and embraced by local governments to make a significant difference in achieving our climate goals.

For example, on a small scale, look at how electric cargo bikes are increasingly diminishing the environmental impact of urban deliveries. The British advocacy group Possible put out a study last year that found electric cargo bikes reduced emissions by 90 percent compared to diesel vans and by one-third compared to electric vans. Plus, the bikes were more efficient from a delivery standpoint, making more than 50 percent more deliveries than vans.

Although car emissions get a lot of publicity, building emissions are a bigger culprit. According to Climate Action Playbook, the buildings of Philadelphia emit a whopping 75 percent of the city’s total carbon footprint—triple the total emissions from all modes of transportation.

What cargo bikes are doing for deliveries, Vicinity is doing for building emissions. In April, we announced the launch of eSteam™. It’s a technology specifically designed to rapidly decarbonize this critical area of climate change. We will offer renewable thermal energy by installing electric boilers instead of the traditional gas-burning variety and industrial-scale heat pumps and thermal storage at our central facilities to provide sustainable and reliable service. Although eSteam™ will first be available in Boston and Cambridge, Philly will soon follow.

Investing in renewable energy sources will serve to increase energy stability and reliability in the face of recent climate and fossil fuel-related emergencies. At this week’s climate event in NYC, leaders noted that renewables would ensure resilience and security beyond driving economic growth.

We are committed to using innovative technology to upgrade how we create steam to serve downtown Philadelphia. We’ve already begun scoping and designing our systems for decarbonization. We are beyond excited with the overwhelmingly positive response to our plan among advocates, policymakers, and customers.

Simply put, Philadelphia is on track to become the largest decarbonized district energy system in the U.S.

At Vicinity Energy, we constantly look at what leaders are doing worldwide for inspiration and guidance on combatting climate change. Similar thermal energy systems surpass their climate goals in places like Copenhagen, and we need to do more in Philadelphia. Vicinity is innovating, implementing, and solving decarbonization challenges, “Getting It Done” with district energy.

As Climate Week NYC hails “Getting it Done,” Vicinity Energy is solving renewable energy challenges

With the most prominent global climate event kicking off, Climate Week NYC 2022, the environmental community has genuine excitement and optimism. The optimism is spurred by the passage of the Inflation Reduction Act (IRA), recently signed into law by President Biden. Its climate change and energy innovation elements represent Congress’s most significant climate investment ever made. In Massachusetts, this is coupled with Governor Charlie Baker signing the “Act Driving Clean Energy and Offshore Wind” bill into law – which outlines the roadmap for how Massachusetts will meet its ambitious climate targets and clean energy goals for 2050 – potentially further solidifying New England’s status as a national leader. 

While the IRA is projected to reduce the country’s carbon emissions by roughly 40% by 2030, Massachusetts businesses, government, and the climate communities continue to grapple with how to reach net zero emissions. It will be heartening to see Climate Week’s organizers bring together the world’s most influential leaders in climate action to explore the impact of buildings and infrastructure on climate. Still, event stakeholders need to capitalize on recent momentum while staying focused on what will have a tangible, real-world impact. 

Today, buildings represent nearly 40% of greenhouse gas emissions and a third of global energy demand, so it’s critical that net zero buildings be powered by renewable energy. Given the outsized role that commercial buildings play in emitting carbon in major cities, carbon-free renewable energy technology can provide a one-stop- shop for institutions considering the right approach with enforceable emissions performance standards. As the first company of its kind in the U.S. to electrify its operations, we are committed to offering renewable thermal energy by installing electric boilers, industrial-scale heat pumps, and thermal storage at our central facilities starting in Boston and Cambridge, with additional locations to follow. Not only will this technology reduce a building’s carbon emissions, but customers will also be able to achieve their ESG goals while complying with regulations.   

With district energy, thermal energy is produced at a central facility and distributed to individual buildings via underground piping, eliminating the safety risks associated with onsite generation. District energy systems are agnostic to fuel type. This fuel flexibility enables the use of lower-carbon, local sources of energy, increasing the resiliency and security of the network and the health of our communities. Decarbonization upgrades to Vicinity’s centralized facilities immediately benefit the entire network. As more new renewable technologies and sources come online, district energy systems will easily integrate into existing distribution systems.

In 2024, Vicinity’s first electric asset will enter service. At that time, the company will procure electricity from renewable, carbon-free energy sources such as wind, solar, and hydro to generate our steam product. Unlike onsite generation – which intrinsically involves onsite combustion as part of the energy generation process – district energy is a much safer alternative. 

President Biden’s pledge to reduce U.S. emissions from 2005 levels – by at least in half within the next several years – and achieve net-zero emissions by 2050 is ambitious. One key to understanding how Greater Boston institutions will reach these goals can be found in the upgraded and innovative use of district energy. As Climate Week NYC 2022 celebrates recent progress and debates the opportunity to transform traditionally hard-to-abate sectors, it will be necessary for thought leaders to recognize the radical shift that has recently occurred within our industry. Commercial building owners in Boston already see the difference.

We look forward to demonstrating this technology’s role in more significant decarbonization debates as we expand into additional markets in the near future.

District energy is charging Philly’s ever-growing life science market

Life sciences are currently booming in the United States. An outpouring of new products and technology coupled with capital inflows from public and private investors are transforming the industry, allowing new implementations to take shape. As talent within the field continues to rise, new treatments for diseases such as cancer, HIV, and cystic fibrosis are finally within reach. There has also been a growing emphasis on the standard of care patients receive, demonstrated through the quality and performance management requirements gaining particular attention in life science professions. With this surge in technology, funding, talent, and performance, the demand for lab space across significant markets is stronger than ever. 

A real estate shift is occurring

The COVID-19 pandemic ignited a shift in how traditional office spaces are used. Lockdowns proved that employees did not have to be in the office to complete projects and tasks, and productivity increased with remote tools such as Zoom and Microsoft Teams for collaboration. This new paradigm has diminished the need for office space in numerous industries.

Needle inserted into covid 19 vaccine vial

The opposite is true for careers in medicine and biotechnology: the pandemic verified the crucial need for health care workers and researchers to have hands-on lab space for their life-saving findings and operations. The outcome of these two factors was a real estate scramble.

Because of this transition, city landlords are desperately converting their vacant office spaces into laboratories, making way for the world of life sciences to thrive.

How is this affecting Philadelphia?

In 2017, researchers at the University of Pennsylvania and Children’s Hospital of Philadelphia boosted Philly’s status in the medical industry by developing an FDA-approved treatment for a rare form of retinal blindness. That same year, the University of Pennsylvania’s CAR T cell therapy was approved by the FDA to treat a specific type of cancer found in children and young adults. This treatment has now won its third FDA approval in 2022. 

Philadelphia has since maintained its glowing reputation as a hub for the life science market, as seen by the industry’s employment rate, which has grown by a staggering 116% since 2001. Medical and biotech organizations flock to Philadelphia not only for their growing pool of talent but also for their valuable real estate. Compared with other top life science markets such as Baltimore, San Francisco, and New York City, Philadelphia’s market displays significant cost advantages in building operations and maintenance. 

These cost advantages can be attributed to Philly’s thriving district energy network, a crucial motivator for labs, hospitals, and other research and development establishments to expand into this region.

Meeting rigid requirements for laboratories

Laboratory operations require a lot more energy than those of a typical office building. In the U.S., labs can use anywhere from 30 to 100 kilowatt-hours of electricity and 75,000 to 800,000 Btu of natural gas per square foot every year. In a standard laboratory, most power is sourced for cooling, lighting, and space heating, with lighting and space heating accounting for approximately 74% of total energy use.

The ceilings of laboratories must also be appropriate for ductwork and equipment. There must be sufficient airflow for the safety of technicians as well as viable interior wall and ceiling space to meet upgraded mechanical and utility conditions. More importantly, laboratories require a large volume of high-quality, reliable thermal energy to support their fundamental operations. Specific ventilation, space temperature, and humidity measures are necessary to sterilize laboratory tools and equipment.

Surgical tools being set on a sterilized table

An error in any of these requirements can result in millions of dollars lost in research and development. This could cause a significant financial burden for biotech and pharmaceutical organizations as well as catastrophic setbacks in the advancement of medical discoveries. 

Establishing lab space in Philly

As progressive climate action goals continue to develop throughout the U.S., low-carbon sustainable energy will soon become a non-negotiable requirement in cities like Philadelphia. Additionally, individual biotech companies typically have sustainability initiatives, making green energy increasingly vital to operations.

With the speed at which life science firms are growing and expanding, ground-up construction is not an option. Existing buildings must adapt to these requirements, which are becoming increasingly rigid, to meet rapidly approaching sustainability goals. District energy builds upon existing infrastructure, so buildings do not need to make expensive renovations to decarbonize their operations. This energy alternative has been proven to be both environmentally green and cost-effective.

Vicinity’s Philly district energy system

Vicinity Energy offers affordable green steam to Philadelphia’s renowned universities, medical research facilities, hospitals, and other commercial institutions. This steam system is one of the largest district energy systems in the U.S., covering over 100 million square feet of the city’s grounds.

Vicinity has already made multimillion-dollar investments to improve Philly’s critical energy infrastructure, enabling this district energy network to reduce carbon emissions by nearly 300,000 tons annually. 

District energy is considerably more affordable than other onsite alternatives, such as building in hefty electric boilers, which are expensive to install and maintain, take up excess space, and detract from valuable real estate. Vicinity’s interconnected steam facilities provide built-in redundancy, backup generation, and multiple water and fuel sources to ensure these crucial life science organizations can stay up and running 24/7.

The result

As Philly’s district energy system expands, hospitals and laboratories can devote more time, money, and physical space to their life-saving operations. District energy users also enjoy peace of mind knowing that their building supports renewable energy distribution as Vicinity strives towards a cleaner and greener future for Philadelphia.

The $369 billion gamechanger for clean energy

In the same week as a record-breaking Mega Millions jackpot, the US Senate reached a groundbreaking $369 billion climate agreement, days after it appeared a deal was all but dead, The Inflation Reduction Act, which is expected to pass the House later this week, is a milestone victory for the green sector, making a record-shattering investment into emissions-free energy production. It promises to cut carbon emissions by 40 percent nationwide and massively overhaul how Americans get their electricity, heating, and cooling. Although it’s not the multi-trillion-dollar climate plan that President Joe Biden originally envisioned, $369 billion on a bad day isn’t bad.

As anticipated, if passed by both chambers, the Inflation Reduction Act will, as the name suggests, reduce inflation and produce tangible gains for a US economy in desperate need of a boost. Critically, it will also reset the climate change agenda and help to make decarbonization a household issue for a generation of Americans.

You can call it watered down if you’d like. Still, the Inflation Reduction Act is a major political win for both pragmatism and popular opinion, as David Wallace-Wells wrote in the New York Times: “This bill is a compromise, obviously and outwardly. It is also a historic achievement for the climate left and a tribute to its moral fervor and political realism.”

For companies like Vicinity Energy, these historic investments in renewable energy are in lockstep with the decarbonization investments we are already making in the cities served by our district energy systems. Vicinity’s agile, fuel-agnostic systems can easily switch to carbon-free energy sources and lower carbon emissions by converting renewable power into steam. Customers on the system receive a thermal energy product without emitting CO2, making district energy a game changer for the climate and our communities.

So, where is the $369 billion going? The Inflation Reduction Act incentivizes developers to build new emissions-free electricity sources, such as geothermal heating, wind turbines, and solar panels, by offering billions of dollars in tax credits over ten years. The deal struck by Congress also provides substantial incentives to low- and middle-income households to transition to electric heat, fueled by renewables, in their homes. Overall, the legislation stands to rapidly speed up the country’s transition away from fossil fuels and bring the United States closer to the emissions targets set in the Paris Climate Accord.

Among the policies and investments being made with the single-largest investment into the green sector in history are:

  • $4.28 billion – dedicated to creating a High-Efficiency Electric Home Rebate Program that will provide $8,000 for homeowners to install heat pumps, among other rebates.
  • $60 billion – providing incentives to ramp up domestic manufacturing for clean energy products like solar panels, wind turbines, and batteries.
  • $60 billion – targeting a series of environmental justice programs, such as community block grants for neighborhoods that have been disproportionately impacted by the public health harms of pollution and climate change.
  • New federal penalties for companies that produce methane leakage
  • An end to the Trump-era moratorium on offshore wind in the Gulf

You can read the full text of the bill here.