Preparing chilled water and cooling equipment for the summer

In the fall, looming cold temperatures and potential storms signal the need for preventative maintenance activities at Vicinity’s central facilities and customers’ buildings. However, as we approach summer’s warmer temperatures, preventative maintenance is just as important.

During the winter months, certain equipment often lies dormant, making it imperative to assess components of chilled water systems and other cooling equipment well in advance of heightened cooling demands. While some property owners diligently prepare their equipment for the impending heat, it is a timely reminder to consult with your energy provider regarding recommended preventive maintenance for the summer season, whether you rely on district chilled water or steam for cooling or manage your onsite chillers and cooling towers.

Why summer preventive maintenance is critical

As spring begins, it presents an opportunity to inspect cooling equipment that lay dormant throughout the heating season. Implementing preventive measures before the onset of summer and escalating temperatures can yield numerous benefits:

  • Improve equipment reliability, function, and overall lifespan
  • Reduce energy consumption, greenhouse gas emissions, and operational costs
  • Prevent unplanned costs and even system downtime
  • Enhance safety and comfort for employees and building occupants
  • Maintain efficient energy delivery
  • Ensure the long-term sustainability of a property

How to prepare cooling equipment for warm weather

Partnering with our customers, Vicinity’s team tailors our preventive maintenance approach to the unique needs of each building. Preventive maintenance activities can be done at any time but are typically conducted in preparation for the winter and the summer to prepare for peak loads due to temperature changes.

Whether customers need support with recommissioning an onsite cooling system or performing seasonal shutdowns to prepare steam systems for the summer, Vicinity’s operations and maintenance experts can help ensure the equipment will operate effectively for the coming summer and the next heating season. Depending on the building’s system, our team can isolate a maintenance issue or conduct a small shutdown event to repair equipment. Ahead of summer temperatures, Vicinity’s team can test a building’s chilled water or steam system during off hours or weekends to identify any problems.

Several elements of cooling systems require inspection every year or more. Let’s dive into the most critical components buildings should focus on when preparing for the cooling season.

Heat exchanger and water samples

A heat exchanger is a system that transfers heat between a source and a working fluid. In the winter, district energy systems transfer heat from the hot water in the district heating system to the cold water in an individual building’s heating system. In the summer, district chilled water customers rely on this equipment to leverage Vicinity’s chilled water to circulate cool air throughout their buildings.

To ensure that heat exchangers function properly, Vicinity’s team takes water samples from the heat exchanger and tests the water for conductivity. This test helps ensure that tube bundles are not leaking and that city water is not entering the system through such leaks. It’s also important to make sure these systems are clean and are not experiencing any leaks.

Pressure Regulating Valves (PRVs)

Pressure regulating valves (PRVs) are designed to reduce incoming steam pressure to ensure safe steam distribution. Vicinity’s team identifies the PRV’s make, model, size, and serial number. They will then test the valve for leaks, clean orifices, check diaphragm plates, test the gauging, and set it to the desired system pressure.

Testing PRVs is important because failed PRVs may cause system over-pressurization and relief values to release steam into the atmosphere. If a PRV fails, it can also improperly cycle open and closed, oversupplying and then starving the downstream equipment of steam. Testing includes inspecting the PRV operating mechanism (pneumatic, hydraulic, or motor-operated). Whether a building turns off steam for summer or leverages steam for cooling purposes, PRV testing is critical for overall system efficiency and reducing any potential energy losses.

Mechanical room hot water loop

In a building’s mechanical room, Vicinity’s team inspects all piping, inlet/outlet temperatures, and pressures on heat exchangers and mechanical pumps.

This inspection confirms the adequate operation of key energy transfer equipment, such as heat exchangers, which supply building heat, hot water, and other process loads. It is also important to note the general condition and function testing of space heaters and heat tracing.

Cooling towers and chillers

Chillers and cooling towers are important components of some buildings’ cooling systems. While chillers cool down water using a refrigerant, which is then circulated through the building to absorb heat from the air, cooling towers then reject heat from the chillers’ condenser water and return it to the condenser at a lower temperature as part of the system’s refrigeration cycle.

Vicinity can partner with customers who do not leverage district chilled water and own onsite cooling towers and chillers, providing additional operation and maintenance support to ensure a seamless transition to summer.

Cooling tower maintenance activities for customers who own and operate onsite equipment include disinfecting equipment ahead of seasonal startup to prevent the growth of harmful bacteria; replacing oil in gearboxes to prevent friction and corrosion; performing vibration analysis to mitigate risks related to increased noise, safety concerns, and system inefficiencies; inspecting and repairing distribution spray pipes and nozzles; cleaning basins; and upgrading fan blades and drive shafts as needed.

Chiller maintenance includes removing any dirt or debris collected throughout the year to optimize airflow; checking levels of refrigerant and assessing if additional refrigerant should be added; inspecting all chiller and condenser pumps; cleaning and servicing all variable frequency drives (VFDs) and glycol heat exchangers, the equipment used to cool VFDs; taking oil samples and adjusting levels; and cleaning condenser tubes to maximize equipment lifespan and improve overall energy efficiency.

Summer preparedness checklist

Vicinity’s facilities, especially those with chilled water, take extensive measures to prepare for summer temperatures before the beginning of April. This ensures that our facilities and teams are prepared for any weather or heat-related emergency.

There are several steps that every building should take, however, to ensure summer readiness. Check out our complete checklist to prepare staff and equipment for the coming warm temperatures.

Vicinity’s experts are here to help

Taking proactive steps to maintain your building’s energy systems and prepare for the summer can lead to significant benefits. From lower energy use and carbon emissions to increased safety awareness, the effort invested in preparing your building for hot weather pays off.

Vicinity’s experts are here to help with all your energy needs year-round. Give our energy experts a call to:

  • Work on repairs
  • Submit quotes before the coming cooling season
  • Get help preparing your budgets for next year
  • Schedule a site visit to get preventive maintenance assessments from our team
  • Explore leveraging chilled water or steam for cooling
  • Get support for operating and maintaining your onsite chillers and cooling towers

Learn more about Vicinity’s comprehensive maintenance services offered year-round to optimize building systems’ efficiency, reliability, and cost savings.

Summer readiness checklist

As temperatures rise, it’s time to ensure HVAC systems are geared up for the summer heat to optimize building systems’ performance, conserve energy, and keep occupants comfortable.

Whether buildings use district chilled water or operate onsite chillers and cooling towers, regularly reviewing and implementing this guide ensures proactive building readiness for summer temperatures, helps maximize equipment lifespan, and improves overall energy efficiency.

Print out this summer preparedness checklist and review it every spring to prepare staff and equipment for the coming warm temperatures. Please note that the steps will vary depending on the equipment present onsite.

Contact your account manager to explore partnering with Vicinity’s operations and maintenance experts to assist with summer readiness, equipment upgrades, or preventative maintenance programs.

Vicinity leverages best practices at its central facilities to provide a smooth transition into the summer season. These protocols ensure safe, reliable, and consistent operation to prevent service disruptions for customers who leverage chilled water or steam for cooling purposes. Vicinity’s interconnected energy facilities offer 99.99% uptime energy delivery with resiliency through redundant power and fuel sources.

Vicinity’s summer preparedness includes extensive cooling tower and chiller inspection and cleaning at Vicinity’s central facilities that produce chilled water, including basin cleaning, sterilization to prevent bacteria growth, and oil inspections on gearboxes and fan belts. Vicinity also performs eddy current testing to detect leaks on chiller tubes and inspects refrigerant and oil samples. By taking these proactive steps, Vicinity delivers reliable customer service year-round and reduces the maintenance needed onsite at customers’ buildings.

eSteam™: a cost-effective, carbon-free renewable energy solution to decarbonize your commercial building

Commercial buildings represent the highest source of carbon emissions in major cities, making them one of the most important targets in urban decarbonization. eSteam™ is a unique solution that can address this challenge head-on and inexpensively decarbonize healthcare, life sciences, universities and commercial buildings with ease.

Accelerate decarbonization with eSteam™

Vicinity’s renewable thermal energy product will help you accelerate the decarbonization of your building and our communities. Our solution is turn-key. 

eSteam™ reduces the need for you to invest in new onsite energy infrastructure to meet your sustainability goals. By connecting to the district energy system, you eliminate the need to make significant investments to decarbonize your building’s thermal energy load—we’re doing that for you. Vicinity will leverage and build upon existing infrastructure, including our existing network of steam pipes, electric substations, and transmission lines, and deploy the capital needed to rapidly reduce our carbon emissions.

For our cities, Vicinity’s eSteam™ provides a way to cleanly heat and cool urban buildings—reducing the need for natural gas boilers that create unregulated gas stacks and unmonitored carbon emissions—improving overall air quality in neighborhoods.

eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering maximum flexibility and superior environmental benefits.

eSteam™ benefits:

  • Carbon-free – eSteam™ is carbon-free, so you can meet your sustainability goals and avoid looming carbon taxes.
  • Total flexibility – You nominate how much eSteam™ you want annually and select the renewable electricity source to generate your eSteam™ based on your budget and sustainability objectives.
  • Affordability – eSteam™ is the most cost-effective, affordable option to green your building compared to alternatives, like electric boilers in your building. Vicinity’s access to transmission level rates gives district energy an economic advantage over onsite equipment.
  • Avoid carbon fees and fines – Many cities in the U.S. have implemented or are considering laws that will lower greenhouse gas emissions in buildings. Oftentimes, these policies will carry hefty fines for non-compliance. eSteam™ is guaranteed carbon- free, giving you peace of mind that your building will be green, without costing you more green.
  • Maximum reliability and resiliency – Join the many customers who choose Vicinity’s district energy heating and cooling products for maximum reliability and resiliency.
  • Low capital investments – To access the benefits of eSteam™, you don’t need to invest in costly capital projects and you can avoid expensive building retrofits. Decarbonize your thermal energy footprint by simply connecting to Vicinity’s district energy network.
  • Certifications – Gain potential points for LEED® and ENERGY STAR® certifications to demonstrate your buildings’ commitment to sustainability.

Customers benefit from carbon-free eSteam™ generated with renewable electricity.

How eSteam™ works

By installing electric boilers at our central facilities and procuring renewable power from the grid, we can offer carbon-free steam to meet your buildings’ thermal energy needs. Vicinity can purchase renewable power on your behalf—such as wind, solar and hydro—at transmission level rates, allowing us to keep your costs down.

Coupled with other technologies like industrial-scale heat pumps and thermal storage, our goal is to offer you the most affordable, flexible thermal energy product that lowers carbon footprints, improves air quality and meets sustainability goals.

Vicinity’s eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering you maximum flexibility and superior environmental benefits.

Lock in with eSteam™ today to decarbonize your buildings and avoid looming carbon fees. To learn more about eSteam™ email our energy experts at info@vicinityenergy.us.

Recommended preventative maintenance

Vicinity’s comprehensive maintenance services are offered year-round—during peak usage or before system turn-ons—to optimize steam efficiency, reliability, and cost savings.

Improve the operating performance of steam systems by taking preventive steps to avoid energy losses. Customers who have leveraged Vicinity’s preventive maintenance program have experienced the following benefits:

  • Conserved energy and reduced energy costs by improving system performance and eliminating inefficiencies.
  • Improved reliability by identifying problem areas that could cause unscheduled system outages.
  • Optimized capital expenditure and operating expenses by maximizing system efficiency and strategically planning for infrastructure investments with an identified budget for equipment repair or replacement.
  • Improved operating procedures by reviewing, refining, and documenting preventative maintenance best practices.
We partner with each of our customers to customize recurring service agreements for the summer and winter seasons, tailoring the maintenance services below to their specific needs. Reach out to your Account Manager today to understand the preventative maintenance services offered in your district.

Steam traps

  • Service description: Survey building, locate, identify, tag, and test steam trap performance.
  • Maintenance value: Ensure steam traps function correctly and prevent issues that can lead to energy waste, equipment damage, and safety hazards.

Pressure Regulating Valves (PRVs)

  • Service description: Identify valves’ make, model, size, and serial number. Test pilot valve for leaks, clean orifices, check diaphragm plates, test the gauging, and set to desired system pressure.
  • Maintenance value: Prevent system over-pressurization and relief valves from releasing steam into the atmosphere. Failed PRVs may improperly cycle open and close, both oversupplying and then starving the downstream equipment of steam.

Strainers

  • Service description: Inspect screens and clean out debris, evaluate source of debris, and troubleshoot. Ensure blow-down valves are functioning properly to flush trapped material.
  • Maintenance value: Reduce rust and pipe scale damage to valves and pumps. Ensure heat transfer surfaces are kept free of efficiency reducing deposits.

Heat exchangers

  • Service description: Perform water chemistry testing, determine if leaks exist, measure tube thickness, repair or plug tubes as needed, and perform preventative maintenance, such as hydrolasing or cleaning as needed.
  • Maintenance value: Recover efficiency losses, optimize operation of the exchangers, and reduce energy consumption.

Steam pipe

  • Service description: Inspect steam piping. Check for leaking joints, watermarks on insulation, and corrosion.
  • Maintenance value: Deliver safe and reliable steam into the building while reducing potential for steam emissions into the building.

Condensate return line

  • Service description: Inspect for leaks and corrosion. Check condensate pump seals for leaks. Check vent pipes for vapor emissions.
  • Maintenance value: Avoid condensate water spills, ensure proper evacuation of condensate from system lines, and identify the presence of leaking steam traps in the system.

Mechanical room hot water loop

  • Service description: Inspect all piping, inlet/outlet temperatures, and pressures on heat exchangers and mechanical pumps.
  • Maintenance value: Confirm adequate operation of key energy transfer equipment, such as heat exchangers, which supply building heat, hot water, or other process loads.

Seasonal and maintenance shutdowns/turn-ons

  • Service description: Manage closure and opening of Vicinity’s main service valve for seasonal system curtailment or start of use. Shutdowns require draining of systems while turn-ons require both draining of systems and operating pressure checks.
  • Maintenance value: Ensure safe and confined operation of Vicinity’s main service valve for shutdowns/turn-ons related to seasonal changes and maintenance activities. Reduce radiant energy losses, condensate accumulation in system piping, and mechanical room air space temperature. Prevent pipes from rotting and prepare systems to be dormant for an extended period by draining the systems for shutdowns.

Emergency winter weather preparedness checklist

Melt away the challenges of winter weather. Prevent costly equipment damage and disruptions to daily operations by proactively preparing for winter weather conditions.

To enhance preparedness, we encourage you to utilize our emergency winter weather preparedness checklist. Regularly reviewing and implementing this guide ensures proactive building readiness for winter conditions. It safeguards against potential freeze-ups in steam and sprinkler systems, mitigates the risk of roof collapses due to heavy snowfall, and protects against potential flooding during extremely cold temperatures. These risks present safety concerns and entail substantial financial and time investments in repairs, with the possible consequence of building shutdowns.

Print out this emergency winter weather preparedness checklist and review it every winter to prepare staff and equipment.


Vicinity has rigorous cold weather protocols to ensure safe, reliable, and consistent operation of its facilities to prevent service disruptions. Our interconnected energy facilities offer 99.99% uptime energy delivery through multiple power supplies, backup generation, and several water and fuel sources in case of interruptions to other utilities. 


Vicinity’s winter weather protocol includes:

  • A comprehensive cold weather plan that entails pre-season preparation, pre-storm planning, weekly winter weather readiness checks, and post-season assessment.
  • Identification, monitoring, and prioritization of components, systems, and other areas of vulnerability at our facilities which may experience freezing problems, pose safety risks, prevent the delivery of fuel or water, or result in other cold weather operational issues.
  • Validation that critical equipment is operational through function testing.
  • Implementing ongoing walk-downs throughout the season to ensure heat tracing is functional, sufficient pipe insulation is in place, and opportunities for continuous improvement are identified.
  • Strict compliance with North American Electric Reliability Corporation (NERC) – Emergency Operations (EOP).
  • Annual training with specific checklists related to freeze protection panel alarms, troubleshooting and repair of freeze protection circuitry, identification of facility areas susceptible to winter conditions, review of special inspections or rounds implemented during severe weather, and fuel switching procedures.

Heating reimagined: industrial-scale heat pumps for building decarbonization

Revolutionizing the way we heat buildings by integrating industrial-scale heat pumps to produce carbon-free eSteam™

Industrial-scale heat pumps are revolutionizing the energy industry. With the ability to produce temperatures of up to 150C, these powerful systems have become a sustainable solution across the globe. As the demand for carbon-free heating increases, the shift away from fossil fuels is finally gaining momentum.

Vicinity is transforming district energy by installing an industrial-scale heat complex. This innovative heat pump complex will draw heat from nearby water sources to generate steam and improve the system’s efficiency. Ensuring that the river and its ecosystems remain unharmed, the river intake system lifts heat from the river and brings it into our facilities.

Key facts

  • Our Cambridge heat pump will have a steam export capacity of 35MW (thermal)
  • The heat pump will occupy a space of approximately 25,000 sq ft. +/-
  • The heat pump will circulate through 24.5 million to 49 million gallons of water from the Charles River daily

How heat pumps work

  1. The heat pump compressor, powered by electricity from renewable resources compresses natural refrigerant to pressures upwards of 1,000 psig.
  2. The heated refrigerant is conducted to a heat exchanger for low-pressure steam generation.
  3. The low-pressure steam is transferred to a multi-stage steam compressor, which increases
    steam pressure from 5 psig to 220 psig, the required pressure for distribution into the district energy system.
  4. After generating steam, the refrigerant is routed to a feedwater pre-heating heat exchanger and is condensed.
  5. The liquified refrigerant is then expanded through an expansion valving arrangement. The expansion reduces the refrigerant pressure, gasifies the refrigerant, and sharply reduces the refrigerant temperature to less than 30 degrees Fahrenheit.
  6. The cold, gaseous refrigerant is conducted to a river water heat exchanger to collect energy from the river water. The river water heat exchanger heats the gaseous refrigerant several degrees Fahrenheit while cooling the river water several degrees Fahrenheit. The cooled, gaseous refrigerant is conducted back to the heat pump compressor for reuse in the heat pump cycle.
 

How Vicinity is using heat pumps

Industrial-scale heat pumps will be installed in cities around the country where Vicinity’s facilities are located near water sources and already employ water intake systems. These heat pumps will extract heat from adjacent water sources, like the Charles and Schuylkill Rivers, to generate steam and improve the system’s overall efficiency.

Across all of our operations, heat pumps will be used with electric boilers and thermal storage technologies to fully decarbonize our operations.

This first heat pump complex in Cambridge will be powered by renewable electricity to efficiently harvest energy from the Charles River and return the water to a lower temperature.

Early design of the industrial-scale heat pump Vicinity Energy is developing in partnership with MAN Energy Solutions.

Why industrial heat pumps are important for Vicinity, our customers, and the environment

The global energy transition can only succeed with decarbonizing heat. Why? Heating in buildings is responsible for four gigatons (Gt) of CO2 emissions annually—10% of global emissions, according to the International Energy Agency (IEA). The heating sector accounts for 30-40% of CO2 emissions globally.

Water-source heat pumps are a proven solution to fossil- fuel-driven heating because they can efficiently harness the renewable power of water sources.

In 2021, approximately 10% percent of the global demand for space heating was satisfied by heat pumps. In some countries such as Norway, Sweden, and Finland, heat pumps are the most widely used heating source and have already begun integrating with district energy systems. The district system in Glasgow will leverage heat pumps to extract cold water from the adjacent River Clyde. This will cover over 80% of building heat demand and will deliver immediate carbon reductions of 50%.

By installing industrial-scale heat pumps at our central facilities, Vicinity is one step closer to instantly decarbonizing millions of square feet of building space for the good of our customers, communities, and the cities we operate. The impact of this plan is substantial: by 2035, Vicinity’s investments at our Kendall, MA facility will reduce the carbon intensity of our steam by 50%, the equivalent of 400,000 tons.

Steam trap inspections

Maximize steam efficiency, safety, and cost savings with preventative maintenance

Improve the efficiency and safety of steam systems with steam trap inspections by Vicinity’s qualified technicians. Our team will diagnose and identify issues to keep steam systems operating safely and efficiently 24/7.

Steam traps are critical components of steam systems and play a vital role in maintaining their efficiency and safety. Steam traps collect condensate to prevent corrosion caused by built-up moisture and ensure high-quality, dry steam flows through the steam system. Steam traps also block the escape of live steam, minimizing energy waste. Regular maintenance and monitoring are essential to ensure they function correctly and prevent issues that can lead to energy waste, equipment damage, and safety hazards.

Vicinity’s steam trap inspections offer the following benefits:

  • Reduced energy costs: Steam traps in good condition help conserve steam, reducing energy consumption and operational costs.
  • Improved equipment reliability: Properly maintained traps extend the lifespan of steam-related equipment.
  • Enhanced safety: Reducing energy waste and water hammer incidents improves workplace safety.
  • Environmental benefits: Energy conservation through steam trap maintenance can reduce greenhouse gas emissions.

How it works

Partnering with our customers, Vicinity tailors each approach specifically to the unique needs of the building. The process of performing steam trap inspections typically includes the following steps:

  • Vicinity coordinates an initial walkthrough of the building and provides a quote showing the cost and scope of work.
  • Once the customer returns a signed quote, Vicinity’s account manager schedules the work.
  • A Vicinity technician conducts the steam trap inspection using an ultrasonic digital detector. If this is the first survey, the technician tags and catalogs each trap for future surveys.
  • After the inspection, the customer receives a report detailing:
    • The status of each trap.
    • Recommended action items and the potential savings associated with recommended action items.

Efficiency and system performance

When steam traps fail and steam escapes, systems demand more steam to operate. Steam trap inspections improve the overall operating performance of steam systems, minimizing the amount of energy waste and the associated carbon emissions.

Cost savings

Leaking steam traps result in significant lost capital over the life of the equipment. Analysis by the U.S. Department of Energy and the Boiler Efficiency Institute shows that repairing a faulty steam trap could save thousands of dollars annually. Steam trap inspections represent an opportunity for customers to reduce energy consumption and operating costs.

Safety considerations

Safety is our primary focus. With Vicinity’s trained technicians conducting the inspections, customers can rest assured that the proper measures are in place to safely conduct and identify any steam trap hazards that can lead to a water hammer event. A water hammer event occurs when a failed steam trap allows condensate to build in the steam main. As steam passes over and combines with the excess condensate, it creates a pressure event that can lead to undesirable noise, damaged equipment, and—in worst cases—injury.

 

Transforming district energy in Boston and Cambridge

As the Vicinity teams work hard to decarbonize our facilities across the country, we are sharing the key updates our facilities are undergoing during this transformation. The electrification of our operations is well underway in Boston and Cambridge, as our facilities across the country prepare to undergo similar processes in the coming months and years.

We are transforming our historic Kendall facility to meet our communities’ and customers’ needs by leveraging existing infrastructure and installing innovative technologies such as an industrial-scale electric boiler, a river-based heat pump complex, and thermal storage. The electrification of our operations will allow us to offer eSteam™, a carbon-free, renewable energy solution, to decarbonize our customers’ buildings and communities.

Learn more about the various updates we’re making to decarbonize our Boston and Cambridge operations below and stay tuned for all future updates on our progress.

Boston and Cambridge electrification progress

 

June 2024 update

As soon as the electric boiler arrived at Vicinity’s Kendall facility, the team wasted no time in beginning the installation work required to bring this project to life. During the months of April and May, structural steelwork was completed to allow access for operation and provide a framework for mechanical and electrical systems. Crews have been hard at work installing auxiliary pumps, boiler trim, steam piping, and valves that will integrate the boiler into the facility’s existing systems.

Electric boiler installation

 

March 2024 update

At the end of March, our first industrial-scale 42MW electric boiler was installed! After months of preparing our Kendall, MA facility for its arrival and installation, our team successfully carried out the complex process of installing this large-scale technology. The electric boiler is expected to be fully operational by the summer of 2024, and begin serving our Boston and Cambridge customers with carbon-free eSteam™.

Electric boiler installation

March 2024 update

In March, our team got to work preparing the space in our Kendall facility where the 42MW electric boiler will be installed. This area is being prepped, and recently our team finished assembling the platform that the electric boiler will rest upon once installed. The 42MW electric boiler has arrived at our Kendall facility and is expected to be fully operational by the summer of 2024.
 
Electric boiler platform
 

February 2024 update

Several upgrades are taking place throughout February as part of our Kendall facility’s electrification transformation. Several pieces of equipment are being removed, demolished, or prepared to be demolished, to make room for our more sustainable and efficient systems.

The areas that will be home to these technologies are being prepared for their installation, with various demolition projects underway and steelwork being prepared. The 42MW electric boiler has arrived at our Kendall facility and is expected to be fully operational by the summer of 2024. The 35MW industrial-scale heat pump complex is anticipated to enter service at our Kendall facility in 2028.

Electrification and efficiency upgrades and preparations begin

 

December 2023 update

In December, Vicinity’s Deputy CEO and President Kevin Hagerty and Senior Vice President of Engineering Pat Gillooly traveled to the MAN Energy Solutions’ Oberhausen and Berlin engineering offices and manufacturing and assembly facilities, along with our design team from Vanderweil Engineers.

Our team met with MAN to align our goals and objectives for the industrial-scale, river-based heat pump complex to be installed at our Kendall facility in Cambridge, MA, and better understand the team’s full capabilities in engineering and producing high-quality heat pumps and steam compressor systems.

Vicinity team travels to Germany to meet with MAN Energy Solutions team

 

November 2023

In November, we announced the arrival of our 42MW industrial-scale electric boiler at our Kendall Square facility in Cambridge. After passing a factory acceptance test with Vapor Power International and Precision Boiler, the boiler was delivered to our Kendall facility to be prepared for installation.

The boiler will be installed in the coming months and is expected to be fully operational by the summer of 2024.

The electric boiler is pivotal in Vicinity’s mission to provide sustainable solutions to our customers. Once operational, the boiler will enable the immediate production of eSteam™, our award-winning carbon-free thermal energy product.

Industrial-scale electric boiler arrives at Vicinity’s Kendall facility

 

November 2023

In November, our industrial-scale electric boiler underwent a factory acceptance test with Vapor Power International and Precision Boiler to ensure it was ready to be delivered and begin operating at our Kendall facility in Cambridge.

The rigorous test included several steps: the team examined the equipment in its final assembly process, then the boiler was disassembled, and the removed piping was painted before the boiler was re-assembled. It was inspected for quality assurance and to ensure the boiler met ASME standards. Then, power on the control cabinet was added. The Human Machine Interface (HMI) and the system’s screens and logic were reviewed. The simulation of alarm and trip signals in the control system was completed.

Finally, the teams discussed shipment details, details on re-assembly at the site, and what is involved in the commissioning and startup of the boiler. Vicinity’s Senior Performance Engineer Steve Murphy and Kendall Shift Supervisor Jeff Gawrys witnessed the performance testing.

Industrial-scale electric boiler undergoes factory acceptance testing

 
The electric boiler undergoes a factory acceptance test with Vapor Power International and Precision Boiler.
The electric boiler undergoes a factory acceptance test with Vapor Power International and Precision Boiler.

April 2023

In April, we announced our partnership with the Augsburg, Germany-based organization MAN Energy Solutions to collaborate in developing low-temperature source heat pump systems for steam generation.

Vicinity plans to install an industrial-scale heat pump complex at our Kendall facility by 2028. Once installed, it will be powered by renewable electricity to harvest energy from the Charles River safely and efficiently, returning it to a lower temperature so as not to harm the river’s environment.

The Cambridge heat pump complex will have a steam export capacity of 35MW, occupy a space of around 25,000 sq ft., and circulate 24.5 million to 49 million gallons of water from the Charles River daily.

MAN Energy Systems and Vicinity Energy partner on the development of industrial-scale heat pumps

 

February 2023

In February, we announced a long-term partnership with our first eSteam™ customer, IQHQ, Inc., a premier life sciences real estate development company focused on leadership in sustainability. Vicinity will provide eSteam™, our carbon-free, renewable thermal energy offering, to IQHQ to rapidly decarbonize IQHQ’s developments in the Fenway neighborhood.

 

November 2022

In November 2022, we officially kicked off our electrification plans with the deconstruction of a steam turbine at our Kendall facility. In its place, we are installing an electric boiler, marking a critical step in our commitment to reaching net zero carbon emissions across our operations by 2050.

Boston Mayor Michelle Wu joined us at our Kendall facility to commemorate the milestone.

Kicking off our electrification plans with Mayor Michelle Wu

 

How district energy is helping commercial buildings meet Boston’s BERDO 2.0 requirements

Like many cities nationwide, Boston has set aggressive climate goals to curb the harmful effects of climate change. Boston aims to be carbon-neutral by 2050, meaning the City will only be able to release as much carbon as the environment can safely absorb.

But how does the City plan to make this happen?

In large part, carbon neutrality will come from decarbonizing the energy-intensive buildings that operate in Boston: commercial offices, hospitals, colleges and universities, and many others.

The Building Emissions Reductions and Disclosure Ordinance (BERDO), originally enacted in 2013, required large Boston buildings to report and disclose their emissions.

In 2021, however, the amended ordinance — BERDO 2.0 — was unanimously passed by the Boston City Council and signed into law, officially moving the ordinance beyond reporting and setting enforceable emissions standards for buildings. In 2023, BERDO 2.0 policies and procedures were finalized.

Crucially, the ordinance aims to eliminate the 70% of greenhouse gas emissions that commercial buildings contribute to the City of Boston.

What BERDO 2.0 means for Boston building owners and developers

The 2021 amendment to BERDO gives the City of Boston authority to set emissions standards for large existing buildings. The emissions thresholds will decrease to reach net zero by 2050.

BERDO 2.0 states enforceable minimum building emissions performance standards, measured in kilograms of carbon dioxide equivalent per square foot per year. These emissions standards differ by building use but will begin to apply in 2025 for already-covered buildings and in 2030 for newly-covered buildings. Based on 2022 emissions reporting, several hundred buildings in Boston are projected to exceed their emissions limit in 2025.

BERDO 2.0 also imposes changes in enforcement penalties. The amended ordinance introduced fines for failing to meet the performance standard and inaccurate reporting.

BERDO 2.0 does not just apply to commercial buildings, but also applies to the following:

  • Non-residential buildings that are 20,000 square feet or larger.
  • Residential buildings that have 15 or more units.
  • Any parcel with multiple buildings that sum to at least 20,000 square feet or 15 units.

In addition, the amended ordinance proposes potential ways buildings can achieve their required emissions reductions, including on-site energy efficiency or renewable energy measures, fuel switching, and clean electricity purchasing options like Renewable Energy Portfolio Standard (RPS) Class I eligible Renewable Energy Certificates (RECs) generated by non-CO2e emitting sources, and Power Purchase Agreements (PPAs) with non-CO2e emitting renewable sources.

To find out whether they are over the emissions limit and get an estimated emission reduction forecast, buildings can use the City of Boston’s BERDO emissions calculator. 

How district energy meets BERDO 2.0 requirements

Our team of experts at Vicinity is prepared to help building owners and developers in Boston meet the aggressive emissions reduction requirements posed by BERDO 2.0 and avoid paying alternative compliance payments.

Our clean energy future plan outlines our roadmap to reaching net zero carbon emissions across all our operations by 2050 or sooner. Central to our decarbonization plan is the innovative eSteam™ product.

To generate eSteam™, Vicinity will import carbon-free electrons through co-located substations to power electric boilers, coupled with industrial-scale heat pumps and thermal batteries, to deliver electrified, carbon-free steam, known as eSteam™, for heating, cooling, sterilization, humidification, and other thermal energy needs.

Building upon success stories in European countries like Norway, Finland, and Sweden, Vicinity is electrifying our district energy systems. Our approach is based on our ability to:

  • Leverage established technologies such as industrial-scale electric boilers and heat pumps to convert electricity into steam;
  • ​Capitalize on the flexibility of our existing assets that connect to the electric transmission system today​;
  • Take advantage of the future economics of renewable electricity to introduce green electrons to our fuel mix;
  • And utilize the agility of fuel-agnostic district energy to decarbonize, easily “flipping the switch” to greener fuels​.

By electrifying our central facilities, all our customers can access carbon-free eSteam™ to meet building performance standards and avoid costly building modifications.

Our team is actively working towards our goal of net zero. In November 2022, we kicked off our electrification plans by deconstructing a steam turbine at our Kendall facility. We are installing an electric boiler in its place, which will enter service in 2024.

In April 2023, we took another crucial step in our clean energy future plans by announcing our partnership with MAN Energy Solutions to develop low-temperature source heat pump systems for steam generation. Currently, we are designing the heat pump complex, which will occupy a space of approximately 25,000 sq. ft. and will circulate through 24.5 million to 49 million gallons of water from the Charles River each day, returning the water to the river at a lower temperature and ensuring that the river and its ecosystems remain unharmed.

Meeting BERDO 2.0 requirements with eSteam™

eSteam™ is carbon-free and recognized in the BERDO 2.0 regulations. This thermal product offers a straightforward solution for commercial landlords and developers trying to meet the ordinance’s carbon-reduction goals.

Vicinity’s eSteam™ is recognized as emissions-free by BERDO 2.0 regulations, providing customers with a compliant and cost-effective solution.

The Vicinity team assists customers in Boston with BERDO 2.0 reporting energy usage through Energy Star Portfolio Manager, one of the three reporting requirements set by BERDO 2.0.

Our team sends energy usage data and an annual energy summary to customers every month, making their reporting process more efficient and accurate.

Carbon reduction acts in Boston and beyond

While Boston is undoubtedly leading the country by reimagining the energy industry, many other cities around the U.S. are planning to enact ordinances similar to BERDO 2.0.

The City of Baltimore, for example, is currently in the implementation stages of the Climate Solutions Now Act, or SB 528. The act proposes a greenhouse gas reduction goal of 60% by 2031, with net zero carbon emissions by 2045.

Vicinity’s district energy systems are uniquely poised to help building owners and developers in Boston, Cambridge, Baltimore, Philadelphia, and more to meet building performance standards today and in the future.

 

Market update: natural gas outlook winter 2024

As we continue into the winter season, Vicinity’s team has been evaluating weather patterns and predictions for the natural gas market to prepare our customers for potential price fluctuations.

After peaking in December 2023, the El Niño pattern continues, and February 2024 weather forecasts indicate above-average temperatures in the Northeast and Midwest, induced cooling in the South, and higher precipitation in the Pacific, which experts predict may continue into the remainder of the winter season.

The natural gas markets have reset to similar levels as 2021, before the geopolitical events in 2022 drove prices above average.

By the numbers: what we know and what we can expect

Prior to January 2024’s well freeze-offs, the U.S. lower 48 saw strong natural gas production, primarily due to efficiencies in the Permian Basin of the U.S. that have provided ample supply to the market, mitigating demand risk. However, due to colder weather in the Permian basin in recent weeks, natural gas production has fallen.

Currently, natural gas storage levels are 4% above 2023 levels and 5% above the 5-year average. Europe’s storage facilities were 80% full through the first half of January 2024, slowing European demand for LNG and suppressing pricing.

Colder weather conditions in January 2024 have contributed to well freeze-offs in the Permian natural gas basin, impacting output and potentially providing more upside risk to pricing. However, the January 2024 futures contract settlement was less than levels at this time last year.

Key electrification progress

The adverse effects of natural gas far outweigh the benefits of continuing to invest in this unsustainable fuel source.

In 2023, the U.S. saw an estimated 1.9% decrease in carbon emissions, as measured in research done by the Rhodium Group. Throughout the year, emissions remained below pre-pandemic levels and dropped to 17.2% below 2005 levels.

While this decrease is substantial, an even greater emissions reduction is necessary to limit climate change. In 2023, Earth’s average land and ocean surface temperature was 2.12 degrees F above the 20th century, making it the highest global temperature among all years recorded since 1850, according to the U.S. National Oceanic and Atmospheric Administration.

The undeniable climate crisis drives Vicinity’s progress towards transitioning away from fossil fuels and eliminating carbon emissions from our operations. By electrifying our operations nationwide, we will be able to offer an affordable, carbon-free path for building owners to meet sustainability goals and join us in limiting climate change.

Our first electric boiler has been delivered to our Kendall facility in Cambridge, Massachusetts, and it will enter service in 2024, immediately allowing our customers to harness carbon-free energy and decarbonize their buildings.

The industrial-scale heat pump complex we are developing in partnership with MAN Energy Solutions is undergoing engineering and will enter service in 2026. These milestones demonstrate our commitment and progress towards a net zero carbon future.