How district energy is supporting the transition from empty offices to thriving laboratories

Office space may be cooling down, but lab space is heating up

The COVID-19 pandemic has had a seismic impact on professional office work environments. Before the pandemic, most workplaces were strictly in-office, but now, the majority have shifted to work from home or a hybrid formula. This transition seems to be sticking, which means many office buildings in urban centers are now standing empty.

One type of work that cannot shift to a ‘work from home’ or hybrid model is laboratory research. Lab technicians require specific equipment and ideal environments that are only available in a physical lab. While the demand for office space has plummeted, the need for lab space is higher than ever. As a result, building owners and developers are converting empty offices into labs at an accelerating rate.

Lab space conversions are increasingly popular in areas experiencing notable life science booms, like Boston, Cambridge, Philadelphia, San Francisco, and San Diego. From 2009 to the end of 2019, the amount of lab space in the U.S. grew from 17 million to 29 million square feet. Even smaller cities like New Haven are “desperate” for more lab space because of a huge influx of life science enterprises on the scene. Boston is expected to complete construction for 2 to 3 million sq. ft. of new lab space by 2024. Lab space vacancy in Boston is currently at a mere 4.5%, versus overall office space vacancy, which is as high as 23%. Rents for lab space in the Boston area price at over $100 per sq. ft., making conversions extremely profitable. Furthermore, lab leases are generally 10 to 15 years long, giving landlords assurance that the conversion investments are worth it.

Lab space has several unique requirements for building owners to consider

Labs require a whole host of structural and service considerations. Efficient, effective laboratories require appropriate ceiling heights for duct work and equipment, enhanced airflow for the safety of technicians, and viable interior wall and ceiling space for increased mechanical and utility requirements. Developers must also keep in mind that different building codes and zoning requirements may apply, as compared to general office space. 

Perhaps most importantly, labs require high-quality and high-volume reliable 24/7 energy to provide power, cooling, heating, humidification and sterilization to ensure uninterrupted research, sanitized laboratory equipment and tools, and preservation of delicate procedures.

Evaluating your energy options

District energy

District energy is a great option to meet the unique requirements of lab space. Life science companies need huge volumes of high-quality, reliable thermal energy to support their critical operations, including specific ventilation, space temperature, humidity requirements, and the sterilization of laboratory tools and equipment. District steam energy has many advantages:
Without the burden of onsite combustion or maintaining chillers or boilers, district energy is a safer option than onsite infrastructure and also requires way less maintenance expense.

  • For sterilization and humidification, the CDC recommends steam sanitation over conventional sanitation methods.
  • District energy is more resilient and reliable even in the face of climate events.
  • District energy allows upper limits of heating to be adjusted, necessary for the specific conditions labs require.
  • A building can connect just a few floors to district energy if they only want to convert some floors to lab space.
  • District energy is a greener option and in cities where life sciences are booming, these same cities often have aggressive carbon emissions savings targets.
  • This energy solution also frees up valuable floor space, which allows life science companies to focus and leverage valuable square feet for their core operations.

Microgrids and distributed generation

A microgrid is an energy grid that typically provides power and thermal energy to a campus or group of buildings in close proximity to each other. In some cases, it makes sense for a research campus to develop an onsite independent energy solution to meet their critical energy needs. Microgrids can even store energy and use renewables. An independent energy developer with finance, engineering and construction management expertise can develop a custom distributed energy solution, from planning to implementation.

Alternatively, microgrids can also be integrated into district systems to provide even more energy resilience and reliability. Labs have extremely high thermal energy and power needs, making a microgrid solution (which provides both) a feasible and practical solution. Vicinity has developed and operates microgrids for multiple clients – including for a global biotechnology company.

Onsite boilers/chillers

Pairing onsite boilers and chillers for thermal energy and engaging a traditional power utility for electricity is often the first option that occurs to many commercial companies and building owners. However, most underestimate the cost and maintenance that goes along with such a decision or the risks to reliability. Onsite chillers and boilers require substantial upfront capital and ongoing maintenance costs. They take up valuable space in the building that easily could be used for core operations instead. Buildings with boilers also run the risk of insufficient steam pressure and poor steam quality. Labs require constant airflow in order to maintain a sterile environment – they need approximately five times more air changes than typical office buildings, which is why they tend to put more strain on the HVAC equipment to heat and cool all the fresh air being brought in. More air changes and ventilation requirements puts enormous pressure on boilers, especially in the winter, as it decreases the life of boilers, increases fuel costs, and means more repairs and maintenance. Not only does district energy or high-pressure steam from a microgrid provide humidification control, hot water, and heat, but it also allows for the sterilization of equipment. More sustainable energy solutions, like district energy and microgrids, often cost less from a lifecycle perspective and are more valuable in the long run.

Looking ahead

As office spaces turn into labs, an important component that life science companies must keep in mind are the carbon goals of the cities they operate in. Many cities have aggressive carbon reduction goals which must be taken into account when planning new commercial and industrial spaces.

Furthermore, many life sciences companies have goals for greening their own operations, sometimes above and beyond city and/or state guidelines. To attract life science companies and stay current with environmental policies, buildings must not only provide a reliable and cost-effective energy solution, but also one that can adapt to changing, and increasingly more stringent, sustainability requirements. This is a tricky matter when it comes to onsite energy generation, as any equipment would likely have to be expensively retrofitted in the future to meet greening initiatives. District energy, on the other hand, can rapidly green its operations with updates to its central plants, with all customers connected to the district system subsequently receiving cleaner energy. Incorporating district energy into any laboratory or office to lab conversion plan ensures not only that new life science tenants will have the HVAC, environmental and space conditions and capacities they need, but also that the building will continue to get greener over time – keeping up with corporate and government sustainability objectives well into the future.

Vicinity Energy Provides Green Steam to Walters Art Museum Under New 20-Year Contract, Delivering Heat and Precise Humidification to Historic Buildings and Artifacts

BALTIMORE, March 3, 2021Vicinity Energy, owner of the nation’s largest portfolio of district energy systems, announces a 20-year steam contract with Walters Art Museum to provide heating and humidification to the landmark Baltimore facility, which encompasses 70,000 square feet of space. With 50 percent of its steam generated from renewables, the district energy system will deliver high-pressure sustainable steam for the museum, replacing the facility’s current boiler setup.

Walters Art Museum will receive approximately 12,000 pounds of steam per hour (pph), replacing its traditional boiler system and transitioning its two existing functional boilers to provide back-up energy as needed. Vicinity is funding the connection to the district system, resulting in zero up-front capital costs to the museum, enabling Walters to reallocate capital funds to support exhibits and other core offerings. Completion of the project is anticipated by April 2021.

“In order to preserve the historic artifacts housed in the Walters Art Museum, our buildings must meet precise humidification requirements. The reliability of district energy, in addition to its ability to meet the specifications of the museum’s exhibitions while also reducing our carbon footprint, makes Vicinity an excellent solution for Walters’s energy needs,” said Julia Marciari-Alexander, who serves as the Andrea B. and John H. Laporte Director.

In addition to providing the museum with steam, Vicinity Energy has committed to a long-term 20-year sponsorship of the Walters – underscoring Vicinity’s commitment to the city of Baltimore, its cultural artifacts, history and communities. Currently, Vicinity provides low-carbon district energy to 30 million square feet of buildings in Baltimore, reducing the region’s annual greenhouse gas emissions by 30,000 tons. As Vicinity advances its net zero carbon plan across all its operations, customers will continue to receive greener energy solutions as a result.

“Through renewable energy use and ongoing greening efforts, Vicinity’s district energy system provides immense opportunity to deliver greener, more reliable energy alternatives to Baltimore facilities, while dramatically reducing their carbon footprint,” said Bill DiCroce, president and CEO of Vicinity Energy. “We’re proud to be the long-term energy partner of such an important Baltimore institution as the Walters Art Museum and deliver reliable heating and the humidification required to preserve the city’s precious cultural artifacts.”

About Vicinity Energy

Vicinity Energy is a clean energy company that owns and operates an extensive portfolio of district energy systems across the United States. Vicinity produces and distributes reliable, clean steam, hot water, and chilled water to over 230 million square feet of building space nationwide. Vicinity continuously invests in its infrastructure and the latest technologies to accelerate the decarbonization of commercial and institutional buildings in city centers. Vicinity is committed to achieving net zero carbon across its portfolio by 2050. To learn more, visit https://www.vicinityenergy.us or follow us on LinkedIn, Twitter, Instagram, or Facebook.

Media Contact

Vicinity Energy
Sara DeMille
Marketing and Communications
857-955-5073
sara.demille@vicinityenergy.us