eSteam™: a cost-effective, carbon-free renewable energy solution to decarbonize your commercial building

Commercial buildings represent the highest source of carbon emissions in major cities, making them one of the most important targets in urban decarbonization. eSteam™ is a unique solution that can address this challenge head-on and inexpensively decarbonize healthcare, life sciences, universities and commercial buildings with ease.

Accelerate decarbonization with eSteam™

Vicinity’s renewable thermal energy product will help you accelerate the decarbonization of your building and our communities. Our solution is turn-key. 

eSteam™ reduces the need for you to invest in new onsite energy infrastructure to meet your sustainability goals. By connecting to the district energy system, you eliminate the need to make significant investments to decarbonize your building’s thermal energy load—we’re doing that for you. Vicinity will leverage and build upon existing infrastructure, including our existing network of steam pipes, electric substations, and transmission lines, and deploy the capital needed to rapidly reduce our carbon emissions.

For our cities, Vicinity’s eSteam™ provides a way to cleanly heat and cool urban buildings—reducing the need for natural gas boilers that create unregulated gas stacks and unmonitored carbon emissions—improving overall air quality in neighborhoods.

eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering maximum flexibility and superior environmental benefits.

eSteam™ benefits:

  • Carbon-free – eSteam™ is carbon-free, so you can meet your sustainability goals and avoid looming carbon taxes.
  • Total flexibility – You nominate how much eSteam™ you want annually and select the renewable electricity source to generate your eSteam™ based on your budget and sustainability objectives.
  • Affordability – eSteam™ is the most cost-effective, affordable option to green your building compared to alternatives, like electric boilers in your building. Vicinity’s access to transmission level rates gives district energy an economic advantage over onsite equipment.
  • Avoid carbon fees and fines – Many cities in the U.S. have implemented or are considering laws that will lower greenhouse gas emissions in buildings. Oftentimes, these policies will carry hefty fines for non-compliance. eSteam™ is guaranteed carbon- free, giving you peace of mind that your building will be green, without costing you more green.
  • Maximum reliability and resiliency – Join the many customers who choose Vicinity’s district energy heating and cooling products for maximum reliability and resiliency.
  • Low capital investments – To access the benefits of eSteam™, you don’t need to invest in costly capital projects and you can avoid expensive building retrofits. Decarbonize your thermal energy footprint by simply connecting to Vicinity’s district energy network.
  • Certifications – Gain potential points for LEED® and ENERGY STAR® certifications to demonstrate your buildings’ commitment to sustainability.

Customers benefit from carbon-free eSteam™ generated with renewable electricity.

How eSteam™ works

By installing electric boilers at our central facilities and procuring renewable power from the grid, we can offer carbon-free steam to meet your buildings’ thermal energy needs. Vicinity can purchase renewable power on your behalf—such as wind, solar and hydro—at transmission level rates, allowing us to keep your costs down.

Coupled with other technologies like industrial-scale heat pumps and thermal storage, our goal is to offer you the most affordable, flexible thermal energy product that lowers carbon footprints, improves air quality and meets sustainability goals.

Vicinity’s eSteam™ is the first renewable, carbon-free thermal energy product in the United States, offering you maximum flexibility and superior environmental benefits.

Lock in with eSteam™ today to decarbonize your buildings and avoid looming carbon fees. To learn more about eSteam™ email our energy experts at info@vicinityenergy.us.

District energy in a climate-uncertain future

With climate change and its clear and present danger upon us, communities must act to embrace resilient energy infrastructure and prepare for a future in a very uncertain climate. Extreme weather events, like the unprecedented cold weather in the midwestern and southern regions of the United States in February 2021, and Superstorm Sandy in 2012, have devastated people living in these areas, presented major challenges to the nation’s energy systems, and driven resilience to the forefront of national conversation – not to mention the extensive financial response required to recover from these events.

While pursuing new energy technologies and solutions is critical to our eventual success as a society, we must balance this future-looking approach with an emphasis on strengthening existing infrastructure and cost-effectively protecting citizens and current energy networks. District energy is a proven energy delivery framework that is resilient, affordable, scalable, and already utilized by grids across the country. With underground carbon steel pipes, insulated and encased in concrete, and fed by central energy facilities, district energy is, by its very construction, extremely resilient. It has the added benefit of enabling a rapid shift to renewable sources and other green energy approaches. Based on these key attributes, district energy is a key component of the solution to our climate-uncertain challenges.

What we’re up against

Since the 1980s, there has been a significant increase in the number and severity of U.S. power outages due to extreme weather. February’s unprecedented winter outages in Texas are just the latest example. Millions of Texans were without power or heat when about half of Texas’s electricity generation was offline. As a result, fuel supplies were slowed by frozen natural gas lines, some towns had to turn off their water supply, and carbon-monoxide exposure skyrocketed when many Texans turned to home generators to keep the heat and lights on. Last year was a record-setting one for wildfires, with over 10 million acres burned nationwide, leading to $20 billion in costs and damages. A decade ago, in 2012, Hurricane Sandy left much of New York City without electricity for days, in addition to causing flooding that shut down power plants and fuel refineries. 117 people were killed, and 8.5 million Americans were without power.

In addition to severe disruptions of everyday life and threats to the health and welfare of residents, these events are costing Americans dearly. According to the National Oceanic and Atmospheric Administration, climate disasters have cost the United States over $1.875 trillion since 1980. The United States cannot afford to continue to operate such vulnerable utility infrastructure, especially as the situation continues to escalate. Americans are paying in tax dollars, and – more importantly – in lives, every moment that goes by without the prioritization of resilience in our nation’s energy infrastructure.

Many communities have already officially recognized the need to put energy resilience at the very center of civic planning. For example, in 2020, Maryland launched the Resilient Maryland Program to fund innovation around energy resilience and distributed energy resources. The Massachusetts Division of Capital Asset Management and Maintenance has a specific resilience program in place to protect key infrastructure from the effects of climate change. And last fall, the city of Philadelphia hired its first Chief Resilience Officer; someone whose entire mission is to ensure that the city’s resources can withstand the impacts of climate change.

How district energy models resilience now

While acknowledging the problem is certainly the key first step of progress, and research toward future improvements is more than necessary, what can communities do right now to protect citizens from the climate disasters that are sure to come at an increasing rate? One solution is district energy.

District energy uses a centrally located facility to generate thermal energy – heat, hot water, or chilled water – for a number of nearby buildings that form an “energy district.” Microgrids, such as can be found at colleges, hospitals, airports, and office parks, are examples of district energy arrangements. District energy offers multiple benefits to its users, including freedom from asset ownership and maintenance and corresponding costs, and price stability. Most important to this issue, however, is that district energy provides energy islanding capabilities that offer far greater resilience than broader-reaching conventional utilities.

For example, during Hurricane Sandy, Princeton University relied on its own microgrid, allowing the university to maintain power and resources while the rest of the city was offline. In fact, Princeton was able to offer emergency workers and the general public a place to warm up, charge their phones, and access the internet, since they were not reliant upon the town’s non-functioning energy supply.

How is district energy so resilient? One major factor is that the generation facilities are often located in urban centers, within or nearby to the grids they serve, as opposed to energy needing to be transported over hundreds of miles from a major power plant. These microgrids can then operate autonomously, even if those around them are without resources.

In addition to proximity, many district energy systems are able to ‘blackstart’ – that is, they can restore operations independently without relying on an external source to recover from a shutdown. Because of this ability to island and blackstart, some district energy systems have upwards of 99.99% reliability, making them desirable infrastructure in an increasingly climate-uncertain world. In fact, many major American military facilities, including Fort Bragg and Andrews Air Force Base, operate on district energy systems due to its superior energy resilience and security.

How district energy can contribute to a greener future

In addition to helping protect communities from devastating climate events right now, district energy can help pave the way to a greener future, in which global warming is addressed and the effects of climate change limited, to help reduce the number of climate-related disasters to begin with. Here are some key ways district energy helps reduce carbon footprints:

  • Reduces primary energy consumption for heating and cooling by up to 50%
  • Many district systems integrate Combined Heat and Power (CHP), which has an average efficiency of 75%, compared to 50% for traditional generation methods (significantly offsetting carbon emissions that would have been emitted through conventional means)
  • A diversity of buildings (such as commercial buildings with daytime use and residential buildings with more evening use) in a district can lead to waste energy sharing and load balancing
  • Central district energy facilities can be easily electrified. Once switched over to new renewable fuel sources and/or technologies, all buildings that are part of the district system will benefit from the carbon footprint reduction instantly, since they are all connected to the same generation facility

Fortunately, the world is catching on to these benefits. The United Nations launched the District Energy in Cities initiative to encourage urban centers to take advantage of the greening power of district energy to help reduce cities’ carbon footprints and thus their contributions to climate change. Campuses, hospitals, and research facilities around the country are already relying on district energy to both meet current energy security needs and to do their part in working toward a greener future.

It’s not always the case that the technology that can help us stay safe now is the same technology that can help us move systemically in the right direction. In the face of a danger as pressing and dire as climate change, we’re fortunate to have that present and future solution in district energy.

Mayor Wu Kicks off Vicinity Energy’s Electrification Plans

Cambridge, November 17, 2022 – Vicinity Energy, a decarbonization leader with the nation’s largest portfolio of district energy systems, serving over 70 million square feet of building space across Boston and Cambridge, has officially kicked off its electrification plans with the deconstruction of a steam turbine at the Kendall Green Energy Cogeneration Facility. Vicinity will install an electric boiler in its place, marking a critical step in the company’s Clean Energy Future commitment to reaching net zero carbon emissions across all its operations by 2050.

Boston’s Mayor Michelle Wu commemorated the day at Vicinity’s Kendall facility. Marking a crucial step toward a clean energy future for Boston and Cambridge, the deconstruction aligns with the Mayor’s latest move to file a home rule petition to ban the use of fossil fuels for new buildings in Boston.

“It is remarkable to be able to say that Vicinity is the first energy company in the country to electrify its operations. That is a huge deal and one that will have ramifications for generations to come. For every gigantic natural gas boiler that’s going to be decommissioned, for every new building that will use eSteam™, those are jobs created right here for our residents and our communities,” said Boston Mayor Michelle Wu. “It is clear that the work of ensuring our planet remains livable is going to require all of us: every level of government, business, and community. We’re very grateful that Vicinity’s carbon-free eSteam™ product will power the leading industries we’re already known for here in Greater Boston such as life sciences, healthcare, commercial real estate, and many more.”

“With the installation of this electric boiler, we are enabling a seamless conversion to carbon-free eSteam™ for our customers, including innovative commercial building owners and developers like IQHQ,” said Bill DiCroce, president and chief executive officer of Vicinity Energy. “This is game-changing for our communities and a prime example of what happens when government, the business community, and the energy sector work together and embrace the region’s Green New Deal.”

The electric boiler will enter service in 2024. At that time, the company will procure electricity from renewable, carbon-free energy sources such as wind, solar, and hydro to generate eSteam™, the first-ever carbon-free renewable energy product. IQHQ will be Vicinity’s first customer to power the rapid decarbonization of its buildings in Boston’s Fenway neighborhood: 109 Brookline and Fenway Center Phase 2 with carbon-free eSteam™.

“Today, we are excited to be celebrating the installation of the electric boiler,” said Jenny Whitson, director of sustainability & ESG at IQHQ. “By Vicinity taking this step to offer developers like us the opportunity to source electric steam generated by renewable energy, we are able to achieve our climate goals and carbon emission reduction targets for our projects.”

Over the years, Vicinity has evolved as new, cleaner fuel sources have become commercially available. The company’s predecessors burned coal to generate steam before migrating to oil, natural gas, and combined heat and power (CHP). Because district energy systems are agnostic to fuel type, they can quickly implement these new, more sustainable technologies and fuel sources. Electrification is the next crucial step to decarbonize Boston and Cambridge at scale and ensure both municipalities meet their new energy standards and emission mandates.

The Kendall Green Energy Cogeneration Facility simultaneously produces thermal energy and electricity in one efficient process to serve approximately 75% of Vicinity’s customers throughout the region. When the electric boilers begin service, all of these facilities will have access to carbon-free, renewable energy at once.

“Here in Kendall Square, a place known for global innovation, we are proud of Vicinity’s contribution to urban decarbonization with eSteam,” said Beth O’Neill Maloney, executive director at the Kendall Square Association. “Vicinity’s electrification plans will help contribute to the decarbonization of Cambridge and Boston without building-level changes. Vicinity is a global sustainability leader, charting a new path forward for district energy.”

Vicinity is on track to fully electrify its steam generation in Boston and Cambridge and introduce other technological advancements into its operations, including industrial-scale heat pumps and molten salt thermal energy storage. The company’s other locations across the country will undergo similar electrification processes in the coming years.

Click here to read more about eSteam™, district energy systems, and Vicinity’s commitment to innovation and the environment.

About Vicinity Energy

Vicinity Energy is a clean energy company that owns and operates an extensive portfolio of district energy systems across the United States. Vicinity produces and distributes reliable, clean steam, hot water, and chilled water to over 230 million square feet of building space nationwide. Vicinity continuously invests in its infrastructure and the latest technologies to accelerate the decarbonization of commercial and institutional buildings in city centers. Vicinity is committed to achieving net zero carbon across its portfolio by 2050. To learn more, visit https://www.vicinityenergy.us or follow us on LinkedIn, Twitter, Instagram, or Facebook.

Media Contact

Vicinity Energy
Sara DeMille
Marketing and Communications
857-955-5073
sara.demille@vicinityenergy.us

Vicinity Energy Launches Carbon-free Renewable Energy Product to Rapidly Decarbonize Buildings

BOSTON, April 7, 2022 – Vicinity Energy, a national decarbonization leader with the most extensive portfolio of district energy systems, launches eSteam™, a new innovation designed to rapidly decarbonize the highest source of emissions in major cities, commercial buildings. The company is the first in the U.S. to electrify its operations, offering renewable thermal energy by installing electric boilers, industrial-scale heat pumps, and thermal storage at its central facilities starting in Boston and Cambridge, with its other districts to follow.

Vicinity Energy centrally produces and distributes steam, hot water, and chilled water to over 230 million square feet of building space nationwide. To offer cost-competitive, renewable thermal energy to its customers, Vicinity will leverage and build upon its existing infrastructure, including its extensive network of underground pipes, electric substations, and transmission lines, which are notoriously hard to site and permit. Further, Vicinity has access to renewable power through the electric grid versus commercial buildings that purchase retail power, typically 2 to 3 times more expensive. Coupling the existing infrastructure with favorable pricing, Vicinity’s innovative approach to electrifying its operations will provide customers with a cost-effective decarbonization tool to meet sustainability goals without expensive onsite retrofits or significant capital investments.

Vicinity’s first electric asset will enter service in late 2024. At that time, the company will procure electricity from renewable, carbon-free energy sources such as wind, solar, and hydro to generate eSteam™.

By electrifying its operations and offering renewable thermal, eSteam™’s benefits include:

  • The ability to leverage district energy with guaranteed carbon-free emissions
  • Total flexibility in the amount selected and the renewable electricity source used to produce eSteam™
  • An affordable, cost-effective energy option to achieve sustainability targets
  • Carbon-neutral energy without substantial capital investments or ongoing, in-building
    maintenance of equipment
  • Additional potential points for LEED® and ENERGY STAR® certifications
  • Continued reliability and resiliency from the district energy system

Vicinity’s eSteam™ will provide customers with another option to cleanly heat and cool their buildings. Commercial buildings will no longer need natural gas boilers, eliminating unregulated gas stacks and unmonitored carbon emissions in our neighborhoods, reducing carbon and improving overall air quality.

“We’re thrilled to be the first district energy company in the United States to bring renewable thermal energy to our customers. Our operations are incredibly flexible, so we can quickly pivot to electrification and offer an innovative, affordable, carbon-free path for commercial building owners with eSteam™,” said Bill DiCroce, president and chief executive officer of Vicinity Energy. “This is game-changing for our communities.”

“We applaud the aggressive efforts of Vicinity Energy to decarbonize their Boston steam system,” says John Cleveland, Senior Advisor to the Boston Green Ribbon Commission. Vicinity Energy CEO Bill DiCroce has been a long-term member of the Commission. “Success on this front will make a major contribution to Boston’s goal of carbon neutrality by 2050 and set a bold example for other district energy systems across the country. It is a great example of what can be accomplished with public-private alignment.”

“There’s no place for gas in a climate-safe future,” said Andee Krasner, on behalf of Mothers Out Front – Boston. “We are excited Vicinity Energy plans to transition away from natural gas
to renewable, clean energy, which will enable commercial buildings to reduce carbon emissions and improve air quality in our communities.”

“Since we announced our commitment to net zero in the fall of 2020, we have evaluated many technical options and conducted numerous feasibility studies to develop a robust, executable Clean Energy Future roadmap,” states Kevin Hagerty, chief technical officer of Vicinity Energy. “We are procuring equipment today to make renewable thermal energy a reality within the next 24 months in Boston and Cambridge. And we’re not stopping there. We’ll be electrifying and introducing eSteam™ in other districts and continuing to innovate to meet decarbonization goals.”

“In cities like Boston and Cambridge, buildings account for nearly 70% of all greenhouse gas emissions,” said Matt O’Malley, Vicinity’s first-ever chief sustainability officer. “Vicinity is uniquely poised to serve as a national leader in building decarbonization. The time for action is now. Our customers want it, our cities are asking for it, and our planet demands it.”

About Vicinity Energy

Vicinity Energy is a clean energy company that owns and operates an extensive portfolio of district energy systems across the United States. Vicinity produces and distributes reliable, clean steam, hot water, and chilled water to over 250 million square feet of building space nationwide. Vicinity continuously invests in its infrastructure and the latest technologies to accelerate the decarbonization of commercial and institutional buildings in city centers. Vicinity is committed to achieving net zero carbon across its portfolio by 2050. To learn more, visit https://www.vicinityenergy.us or follow us on LinkedIn, Twitter, Instagram, or Facebook.

Media Contact

Vicinity Energy
Sara DeMille
Marketing and Communications
857-955-5073
sara.demille@vicinityenergy.us

A clean energy future is in our grasp

Clean Energy Future Infographic

By taking action and implementing a host of innovative energy strategies and technologies, Vicinity is leading the way to building decarbonization.

How the energy industry is forging the path to net zero

In 2018, 33.1 gigatons of energy-related carbon dioxide (CO2) were emitted globally, underscoring the need for immediate action to reduce this staggering number. Put another way, that’s 33.1 billion metric tons, a collective mass equal to 66 times that of all humans on earth.

As greenhouse gas emissions have continued to increase, energy utilities have sought to reduce the amount of CO2 that is released into the atmosphere, as a result of burning traditional fossil fuels.

To combat the rising CO2 levels, many utilities have committed to reach net-zero carbon emissions by either 2030 or 2050. For some, switching to fuel alternatives with lower emissions, such as natural gas, is an interim step to get there, while others look to renewable energy sources, such as wind and solar. While there are many possible paths to reach net zero, one thing is clear: time is of the essence.

But what exactly does net zero carbon emissions mean, and which method of energy production will yield the greatest environmental benefits? Let’s take a closer look.

What is net zero?

The term “net” zero does not mean there are no carbon emissions emitted. At the moment, all fuel-burning energy generation methods emit some carbon. However, after these emissions have been reduced as much as possible, companies can offset the remaining emissions by investing in assets that absorb carbon, such as forests, carbon capture, or other emerging technologies. Those assets effectively cancel out the carbon emissions being produced, resulting in net zero carbon.

Harnessing the power of renewables

Recognizing this need for change, energy utilities have sought alternatives to traditional generation sources to enable continued provision of their essential services. Unlike fossil fuels, such as coal and oil, renewable energy resources are neither extractive, nor reliant on a single resource that depletes over time. Wind, solar, and biofuels are all renewable resources that utilities are investing in to reduce their carbon footprint.

One method for reducing CO2 emissions that can already be utilized is combined heat and power (CHP). Unlike traditional power plants that take excess heat produced during power generation and discard it, CHP efficiently harnesses that excess heat as thermal energy that can be used to keep buildings warm or cool, humidify the air or sterilize equipment. By taking advantage of this resource, utilities can conserve fuel, rather than burn more to produce heat, effectively cutting CO2 production dramatically.

Perhaps what is most exciting about this energy source is that CHP generators can also burn biofuels, such as waste vegetable oil from restaurants or organic matter. By fueling CHP with biofuels, the total amount of carbon emissions produced during energy generation can be additionally decreased.

No matter the method, utilities that choose to utilize the energy potential of renewable resources will see a reduction in carbon emissions. When renewables are combined with generation methods such as CHP systems integrated with biofuels, even greater benefits can be achieved.

The road to net zero

A broad swath of energy generators are shifting to renewables to replace natural gas, especially utilities. Challenges remain, however, especially when it comes to transforming the entire grid to be more environmentally beneficial.

While wind and solar are good renewable resources, they are reliant on ideal weather conditions to produce at maximum efficiency. When there is no wind or sunlight, utilities must turn to other energy sources, such as natural gas, to continue supplying power to the facilities they serve. Although a cleaner resource than burning coal, natural gas does emit CO2 and still contributes to greenhouse gas buildup. Regardless of weather conditions, customers must continue to receive services, and falling back on traditional fuel sources that will produce emissions while providing necessary services is a challenge to decarbonization efforts.

Another obstacle that utilities face is upgrading existing infrastructure. For many utilities, their incumbent grid technology is outdated and ill equipped to accommodate alternative fuel sources that previously were not used or available during the original infrastructure’s development. Because of this, utilities are tasked with not only transitioning to renewables, but also updating systems that have known no other fuel source and were designed for a one-way distribution path. Utilities also have to take into consideration that the majority of U.S. communities leverage onsite boilers for residences and buildings, which means every end user will need to have their infrastructure updated to convert to greener fuels and generation methods as well. The hurdle is a high one – accompanied by a price tag that utilities will have to take into account.

Other facilities have turned to natural gas as a bridge fuel as they shift away from fossil fuels to greener solutions. Though as previously mentioned, natural gas is not carbon-free, although it has a lower carbon footprint than coal or fuel oil. Additionally, those who employ natural gas as a main energy resource may consider transitioning completely away from it to be a daunting challenge. Similar to electric utilities, these organizations will need to seek alternative fuel sources, while also upgrading existing infrastructure, in order to reach net zero. 

In contrast, district energy companies can more quickly transition to renewable fuels and technologies through upgrades at their central plants. Unlike other conventional utilities, upgrades to the distribution system are not required. The improvements made at these central plants, whether this is integrating renewable fuels or converting boilers to renewable electricity, will then benefit all the buildings connected to the district system, dramatically reducing carbon emissions. By nature, district energy is typically found in urban environments, which eliminates the need to transport energy over long distances to customers. It is highly reliable, cost-effective and cuts the amount of fuel that is required by individual buildings using onsite generation. Utilizing renewable resources, energy efficient equipment and green technology at the central plant means that all connected buildings connected to the district become greener. In effect, a district energy system can dramatically reduce the carbon footprints of entire cities relatively quickly and easily.

A greener path

Time is often an overlooked resource, as it is easily spent, but it can never be recouped. As we look to the mid-century, it is crucial that energy utilities explore and implement renewable strategies to reach net zero carbon goals. It is already estimated that global carbon emissions are expected to increase by 0.6% per year until 2050, underscoring the battle against time itself. That equates to more than half a billion additional metric tons per year above 2018 levels.

By harnessing the power of renewable resources, energy providers can dramatically cut carbon emissions and diminish the climate impact of their operations, ushering in a healthier, greener world for generations to come.

Vicinity Energy celebrates Earth Day in Philadelphia

In celebration of Earth Day, Vicinity’s Philadelphia team joined with ACV Enviro for the Schuylkill River Bank clean up. The team spent the day removing a cubic yard of aerosol cans for safe disposal and filled an entire dumpster with trash! The Schuylkill River is used for recreation and is a source of drinking water in Philadelphia, in addition to being an important habitat for wildlife. As a local environmental company in Philadelphia, Vicinity organized this clean-up event because we feel strongly that it is our collective responsibility to keep our cities green.