A pivotal chance for Philadelphia’s climate future

One year ago, the Schuylkill River had just normalized after rising to catastrophic levels following Hurricane Ida. The ensuing floods that swallowed up the Vine Street Expressway, ruined homes, and businesses, and took multiple lives, provided a potent reminder that Philadelphia, nestled between two rivers, is uniquely susceptible to the impacts of extreme weather resulting from climate change.

If nothing else, a look back at the historic flooding should serve as a reminder of the need to advance prescriptive policies at the local level that curtail the negative effects of climate change, reduce greenhouse gas emissions, and protect Philadelphia’s health and infrastructure. The recent Supreme Court decision undermining the EPA’s ability to regulate emissions on a national level amplifies the need for cities like Philadelphia to take charge of their climate futures.

Thankfully, Philadelphia has a policy road map in place. In 2021, Mayor Jim Kenney and City Council made a “net zero” pledge to achieve carbon neutrality by 2050. It’s an ambitious goal that’s drawn support in other cities such as Boston, New York, and San Francisco. Coinciding with the pledge, the city also released a draft of its Climate Action Playbook — a blueprint of data-driven recommendations and expertise to suggest ways to reduce climate change’s impacts through an equitable and inclusive lens.

During Climate Week NYC 2022 and Global Clean Energy Action Forum in Pittsburgh, we want to spotlight Philadelphia and cities around the world that are at an inflection point for environmental progress. While municipalities need to look forward to innovations and policies, there are also existing programs and technologies that could be better harnessed by individuals and embraced by local governments to make a significant difference in achieving our climate goals.

For example, on a small scale, look at how electric cargo bikes are increasingly diminishing the environmental impact of urban deliveries. The British advocacy group Possible put out a study last year that found electric cargo bikes reduced emissions by 90 percent compared to diesel vans and by one-third compared to electric vans. Plus, the bikes were more efficient from a delivery standpoint, making more than 50 percent more deliveries than vans.

Although car emissions get a lot of publicity, building emissions are a bigger culprit. According to Climate Action Playbook, the buildings of Philadelphia emit a whopping 75 percent of the city’s total carbon footprint—triple the total emissions from all modes of transportation.

What cargo bikes are doing for deliveries, Vicinity is doing for building emissions. In April, we announced the launch of eSteam™. It’s a technology specifically designed to rapidly decarbonize this critical area of climate change. We will offer renewable thermal energy by installing electric boilers instead of the traditional gas-burning variety and industrial-scale heat pumps and thermal storage at our central facilities to provide sustainable and reliable service. Although eSteam™ will first be available in Boston and Cambridge, Philly will soon follow.

Investing in renewable energy sources will serve to increase energy stability and reliability in the face of recent climate and fossil fuel-related emergencies. At this week’s climate event in NYC, leaders noted that renewables would ensure resilience and security beyond driving economic growth.

We are committed to using innovative technology to upgrade how we create steam to serve downtown Philadelphia. We’ve already begun scoping and designing our systems for decarbonization. We are beyond excited with the overwhelmingly positive response to our plan among advocates, policymakers, and customers.

Simply put, Philadelphia is on track to become the largest decarbonized district energy system in the U.S.

At Vicinity Energy, we constantly look at what leaders are doing worldwide for inspiration and guidance on combatting climate change. Similar thermal energy systems surpass their climate goals in places like Copenhagen, and we need to do more in Philadelphia. Vicinity is innovating, implementing, and solving decarbonization challenges, “Getting It Done” with district energy.

As Climate Week NYC hails “Getting it Done,” Vicinity Energy is solving renewable energy challenges

With the most prominent global climate event kicking off, Climate Week NYC 2022, the environmental community has genuine excitement and optimism. The optimism is spurred by the passage of the Inflation Reduction Act (IRA), recently signed into law by President Biden. Its climate change and energy innovation elements represent Congress’s most significant climate investment ever made. In Massachusetts, this is coupled with Governor Charlie Baker signing the “Act Driving Clean Energy and Offshore Wind” bill into law – which outlines the roadmap for how Massachusetts will meet its ambitious climate targets and clean energy goals for 2050 – potentially further solidifying New England’s status as a national leader. 

While the IRA is projected to reduce the country’s carbon emissions by roughly 40% by 2030, Massachusetts businesses, government, and the climate communities continue to grapple with how to reach net zero emissions. It will be heartening to see Climate Week’s organizers bring together the world’s most influential leaders in climate action to explore the impact of buildings and infrastructure on climate. Still, event stakeholders need to capitalize on recent momentum while staying focused on what will have a tangible, real-world impact. 

Today, buildings represent nearly 40% of greenhouse gas emissions and a third of global energy demand, so it’s critical that net zero buildings be powered by renewable energy. Given the outsized role that commercial buildings play in emitting carbon in major cities, carbon-free renewable energy technology can provide a one-stop- shop for institutions considering the right approach with enforceable emissions performance standards. As the first company of its kind in the U.S. to electrify its operations, we are committed to offering renewable thermal energy by installing electric boilers, industrial-scale heat pumps, and thermal storage at our central facilities starting in Boston and Cambridge, with additional locations to follow. Not only will this technology reduce a building’s carbon emissions, but customers will also be able to achieve their ESG goals while complying with regulations.   

With district energy, thermal energy is produced at a central facility and distributed to individual buildings via underground piping, eliminating the safety risks associated with onsite generation. District energy systems are agnostic to fuel type. This fuel flexibility enables the use of lower-carbon, local sources of energy, increasing the resiliency and security of the network and the health of our communities. Decarbonization upgrades to Vicinity’s centralized facilities immediately benefit the entire network. As more new renewable technologies and sources come online, district energy systems will easily integrate into existing distribution systems.

In 2024, Vicinity’s first electric asset will enter service. At that time, the company will procure electricity from renewable, carbon-free energy sources such as wind, solar, and hydro to generate our steam product. Unlike onsite generation – which intrinsically involves onsite combustion as part of the energy generation process – district energy is a much safer alternative. 

President Biden’s pledge to reduce U.S. emissions from 2005 levels – by at least in half within the next several years – and achieve net-zero emissions by 2050 is ambitious. One key to understanding how Greater Boston institutions will reach these goals can be found in the upgraded and innovative use of district energy. As Climate Week NYC 2022 celebrates recent progress and debates the opportunity to transform traditionally hard-to-abate sectors, it will be necessary for thought leaders to recognize the radical shift that has recently occurred within our industry. Commercial building owners in Boston already see the difference.

We look forward to demonstrating this technology’s role in more significant decarbonization debates as we expand into additional markets in the near future.

District energy is charging Philly’s ever-growing life science market

Life sciences are currently booming in the United States. An outpouring of new products and technology coupled with capital inflows from public and private investors are transforming the industry, allowing new implementations to take shape. As talent within the field continues to rise, new treatments for diseases such as cancer, HIV, and cystic fibrosis are finally within reach. There has also been a growing emphasis on the standard of care patients receive, demonstrated through the quality and performance management requirements gaining particular attention in life science professions. With this surge in technology, funding, talent, and performance, the demand for lab space across significant markets is stronger than ever. 

A real estate shift is occurring

The COVID-19 pandemic ignited a shift in how traditional office spaces are used. Lockdowns proved that employees did not have to be in the office to complete projects and tasks, and productivity increased with remote tools such as Zoom and Microsoft Teams for collaboration. This new paradigm has diminished the need for office space in numerous industries.

Needle inserted into covid 19 vaccine vial

The opposite is true for careers in medicine and biotechnology: the pandemic verified the crucial need for health care workers and researchers to have hands-on lab space for their life-saving findings and operations. The outcome of these two factors was a real estate scramble.

Because of this transition, city landlords are desperately converting their vacant office spaces into laboratories, making way for the world of life sciences to thrive.

How is this affecting Philadelphia?

In 2017, researchers at the University of Pennsylvania and Children’s Hospital of Philadelphia boosted Philly’s status in the medical industry by developing an FDA-approved treatment for a rare form of retinal blindness. That same year, the University of Pennsylvania’s CAR T cell therapy was approved by the FDA to treat a specific type of cancer found in children and young adults. This treatment has now won its third FDA approval in 2022. 

Philadelphia has since maintained its glowing reputation as a hub for the life science market, as seen by the industry’s employment rate, which has grown by a staggering 116% since 2001. Medical and biotech organizations flock to Philadelphia not only for their growing pool of talent but also for their valuable real estate. Compared with other top life science markets such as Baltimore, San Francisco, and New York City, Philadelphia’s market displays significant cost advantages in building operations and maintenance. 

These cost advantages can be attributed to Philly’s thriving district energy network, a crucial motivator for labs, hospitals, and other research and development establishments to expand into this region.

Meeting rigid requirements for laboratories

Laboratory operations require a lot more energy than those of a typical office building. In the U.S., labs can use anywhere from 30 to 100 kilowatt-hours of electricity and 75,000 to 800,000 Btu of natural gas per square foot every year. In a standard laboratory, most power is sourced for cooling, lighting, and space heating, with lighting and space heating accounting for approximately 74% of total energy use.

The ceilings of laboratories must also be appropriate for ductwork and equipment. There must be sufficient airflow for the safety of technicians as well as viable interior wall and ceiling space to meet upgraded mechanical and utility conditions. More importantly, laboratories require a large volume of high-quality, reliable thermal energy to support their fundamental operations. Specific ventilation, space temperature, and humidity measures are necessary to sterilize laboratory tools and equipment.

Surgical tools being set on a sterilized table

An error in any of these requirements can result in millions of dollars lost in research and development. This could cause a significant financial burden for biotech and pharmaceutical organizations as well as catastrophic setbacks in the advancement of medical discoveries. 

Establishing lab space in Philly

As progressive climate action goals continue to develop throughout the U.S., low-carbon sustainable energy will soon become a non-negotiable requirement in cities like Philadelphia. Additionally, individual biotech companies typically have sustainability initiatives, making green energy increasingly vital to operations.

With the speed at which life science firms are growing and expanding, ground-up construction is not an option. Existing buildings must adapt to these requirements, which are becoming increasingly rigid, to meet rapidly approaching sustainability goals. District energy builds upon existing infrastructure, so buildings do not need to make expensive renovations to decarbonize their operations. This energy alternative has been proven to be both environmentally green and cost-effective.

Vicinity’s Philly district energy system

Vicinity Energy offers affordable green steam to Philadelphia’s renowned universities, medical research facilities, hospitals, and other commercial institutions. This steam system is one of the largest district energy systems in the U.S., covering over 100 million square feet of the city’s grounds.

Vicinity has already made multimillion-dollar investments to improve Philly’s critical energy infrastructure, enabling this district energy network to reduce carbon emissions by nearly 300,000 tons annually. 

District energy is considerably more affordable than other onsite alternatives, such as building in hefty electric boilers, which are expensive to install and maintain, take up excess space, and detract from valuable real estate. Vicinity’s interconnected steam facilities provide built-in redundancy, backup generation, and multiple water and fuel sources to ensure these crucial life science organizations can stay up and running 24/7.

The result

As Philly’s district energy system expands, hospitals and laboratories can devote more time, money, and physical space to their life-saving operations. District energy users also enjoy peace of mind knowing that their building supports renewable energy distribution as Vicinity strives towards a cleaner and greener future for Philadelphia.

The $369 billion gamechanger for clean energy

In the same week as a record-breaking Mega Millions jackpot, the US Senate reached a groundbreaking $369 billion climate agreement, days after it appeared a deal was all but dead, The Inflation Reduction Act, which is expected to pass the House later this week, is a milestone victory for the green sector, making a record-shattering investment into emissions-free energy production. It promises to cut carbon emissions by 40 percent nationwide and massively overhaul how Americans get their electricity, heating, and cooling. Although it’s not the multi-trillion-dollar climate plan that President Joe Biden originally envisioned, $369 billion on a bad day isn’t bad.

As anticipated, if passed by both chambers, the Inflation Reduction Act will, as the name suggests, reduce inflation and produce tangible gains for a US economy in desperate need of a boost. Critically, it will also reset the climate change agenda and help to make decarbonization a household issue for a generation of Americans.

You can call it watered down if you’d like. Still, the Inflation Reduction Act is a major political win for both pragmatism and popular opinion, as David Wallace-Wells wrote in the New York Times: “This bill is a compromise, obviously and outwardly. It is also a historic achievement for the climate left and a tribute to its moral fervor and political realism.”

For companies like Vicinity Energy, these historic investments in renewable energy are in lockstep with the decarbonization investments we are already making in the cities served by our district energy systems. Vicinity’s agile, fuel-agnostic systems can easily switch to carbon-free energy sources and lower carbon emissions by converting renewable power into steam. Customers on the system receive a thermal energy product without emitting CO2, making district energy a game changer for the climate and our communities.

So, where is the $369 billion going? The Inflation Reduction Act incentivizes developers to build new emissions-free electricity sources, such as geothermal heating, wind turbines, and solar panels, by offering billions of dollars in tax credits over ten years. The deal struck by Congress also provides substantial incentives to low- and middle-income households to transition to electric heat, fueled by renewables, in their homes. Overall, the legislation stands to rapidly speed up the country’s transition away from fossil fuels and bring the United States closer to the emissions targets set in the Paris Climate Accord.

Among the policies and investments being made with the single-largest investment into the green sector in history are:

  • $4.28 billion – dedicated to creating a High-Efficiency Electric Home Rebate Program that will provide $8,000 for homeowners to install heat pumps, among other rebates.
  • $60 billion – providing incentives to ramp up domestic manufacturing for clean energy products like solar panels, wind turbines, and batteries.
  • $60 billion – targeting a series of environmental justice programs, such as community block grants for neighborhoods that have been disproportionately impacted by the public health harms of pollution and climate change.
  • New federal penalties for companies that produce methane leakage
  • An end to the Trump-era moratorium on offshore wind in the Gulf

You can read the full text of the bill here.

Reimagining the energy industry: an inflection point for decarbonization efforts

As a coastal city, Boston is particularly vulnerable to the negative and real impact of climate change. Over the next several decades, according to a new report from the University of Massachusetts Boston, this region will almost certainly see hotter days, increasingly intense storms, and rising sea levels. Current guidance coming out of local and state government – such as Boston’s updated Building Emissions Reduction and Disclosure Ordinance (BERDO 2.0), which sets requirements for large buildings to reduce their energy and water use data, stretch codes which are mandated so buildings will achieve higher energy savings, and growing investments in green and renewable energy technologies – are prescriptive policies that will help lower greenhouse gas emissions and hopefully slow climate change’s tide.

Still, with the recent Supreme Court decision curtailing the EPA’s authority to regulate greenhouse gas emissions, achieving a 50 percent drop in emissions by 2030 or a net zero future with the remaining tools from a federal regulation standpoint will be increasingly challenging. This ruling affirms the local business community’s role in achieving net zero, particularly in Greater Boston. In a way, it is an opportunity for creative solutions to drive what needs to be done.

Coming from the government world, I am excited to be part of the solution. And with 2022 now at its midpoint – an inflection point regarding how environmental progress will be achieved locally and nationally, I thought I would share an update on the state of play from our perspective.

Recently there’s been momentum in the environmental world regarding the usage of old technology with an innovative, fresh lens. For instance, cargo bikes are an efficient and environmentally friendly method for making last-mile deliveries. A study last year by Possible, a British advocacy group, found that electric cargo bikes cut carbon emissions by 90% compared with traditional diesel vans and by a third compared with electric vans, according to the report. Air pollution was also significantly reduced. The bikes also delivered approximately 60% faster than vans in urban centers, had a higher average speed, and dropped off ten items an hour, compared with six items for vans. Meanwhile, unlike plastic, glass bottles are a fully sustainable and recyclable resource that also provides fantastic environmental benefits like a longer life cycle and lower carbon footprint. It is also made of natural raw materials and has an enhanced ability to preserve food.

This is precisely what we are doing at Vicinity. In April, we announced the launch of eSteam™, an innovation designed to rapidly decarbonize the highest source of emissions in major cities and commercial buildings. Our company is the first in the U.S. to electrify our operations, offering renewable thermal energy by installing electric boilers, industrial-scale heat pumps, and thermal storage at our central facilities starting in Boston and Cambridge, with other locations to follow.

In cities like Boston and Cambridge, buildings account for nearly 70% of all greenhouse gas emissions. Think about how changing the fuel source can have a profound impact, whether on coal, oil, natural gas, or combined heat and power (CHP) plants. Now is the time to transition from natural gas to renewable, clean energy. That is precisely what this new electrified system will be able to accomplish: modernizing how district energy is approached.

If we are serious about decarbonization, we must be bold and reimagine our industry. That’s what is being done at Vicinity Energy, and we are looking to best practices from similar steam loops in other parts of the world. Copenhagen, Malmö, and Drammen use district energy to meet and surpass their respective climate goals. Our goal is to be the first in the U.S. to lead in this space. Vicinity is uniquely poised to serve as a national leader in building decarbonization. The time for action is now. Our customers want it, our cities ask for it, and our planet demands it.

We are proud of what we are accomplishing.

eSteam™: a new, greener solution to combat carbon emissions

Many people are aware that pollution is a harmful downside to urbanization. What you may not know, however, is that 90% of our world’s population breathes polluted air every day, and 7 million people die from exposure to this contaminated air every year. This is a jarring statistic, and it sheds light on how carbon emissions serve as a silent killer in our world as the air we breathe can quickly and quietly turn lethal.

What is causing this?

Various factors contribute to pollution and climate change around the world. So, what are the biggest culprits, and how do they produce these carbon emissions? Building operations are responsible for 27% of global CO2 emissions each year, with another 20% coming from the construction and building materials required to create and maintain a building. These daily operational emissions generate lighting, heating, and cooling for a building, all essential elements of residential and commercial life. Additionally, many of these carbon emissions from buildings result from desperation to meet growing energy demands in conjunction with a lack of available clean energy options, as most of these establishments are several decades old.

What can be done?

One way to combat the increasing levels of carbon emissions within buildings is to integrate renewable energy systems into existing architecture through renovation and retrofits. It is equally important to ensure that new buildings’ systems are centered around using clean energy. Commonly known renewable energy sources include wind, solar, and hydroelectricity, and while these have proven to be effective in numerous circumstances, another, more cost-effective solution exists. eSteam™ generates power without emitting any CO2 and is the first-ever renewable thermal energy product in the United States!

Customers benefit from carbon-free eSteam™ generated with renewable electricity.

How eSteam™ works

Instead of fossil fuels, eSteam™, a new offering from Vicinity Energy, is fueled by electricity in a process known as electrification. Electric boilers, thermal storage, and industrial-scale heat pumps are installed at central facilities to generate steam. These devices employ renewable power from other carbon-neutral energy sources such as wind, solar, and hydro to produce energy used to power buildings in cities across the country.

Rather than start from scratch with sustainable infrastructure, eSteam™ leverages and builds upon existing infrastructure. This means that older buildings do not need significant investments to decarbonize their thermal energy load. eSteam™ uses Vicinity’s existing network of steam pipes, electric substations, and transmission lines to rapidly reduce carbon emissions. This electrification method is the most cost-effective and reliable way to accelerate the decarbonization of buildings and communities.

Benefits of eSteam™

  • With zero carbon emissions, users can meet their sustainability goals while simultaneously avoiding looming carbon taxes. Many cities throughout the U.S. have implemented or are considering implementing laws to lower buildings’ greenhouse gas emissions. These policies typically impose hefty fines for non-compliance. Because eSteam™ is carbon-free, users can have peace of mind knowing that their building will be greener while avoiding carbon fees and penalties.
  • eSteam™ offers total flexibility. Vicinity gives purchasers of eSteam™ the option to choose whichever renewable energy source they prefer to generate energy for their building. They can also select how much eSteam™ they wish to purchase annually. With these features, eSteam™ is customizable to various budgets and sustainability objectives.
  • eSteam™ is delivered through Vicinity’s district energy system, making it considerably more affordable than other onsite alternatives such as building in electric boilers. This access to wholesale power gives district energy an economic advantage over onsite equipment. It distinguishes eSteam™ as the most valuable and cost-effective method of improving a building’s carbon footprint.
  • Choosing eSteam™ to decarbonize your building eliminates the need to invest in costly capital projects. Therefore, you can avoid the financial burden of expensive renovations. This is because eSteam™ decarbonizes buildings by connecting to Vicinity’s district energy network, which is known for its maximum reliability and resiliency in a climate uncertain future.
  • eSteam™ users can gain potential points for LEED® and ENERGY STAR® certifications. These certifications are a great way to demonstrate your building’s commitment to sustainability.

Act now for the future

eSteam™ will be available nationwide shortly, and you can commit to making this change today. Making the switch to eSteam™ for a low-carbon future will not only aid in saving our planet from the adverse effects of carbon emissions, but it will also help decarbonize our communities so that fewer people find themselves sick or dying from breathing polluted air.

Vicinity Energy Launches Carbon-free Renewable Energy Product to Rapidly Decarbonize Buildings

BOSTON, April 7, 2022 – Vicinity Energy, a national decarbonization leader with the most extensive portfolio of district energy systems, launches eSteam™, a new innovation designed to rapidly decarbonize the highest source of emissions in major cities, commercial buildings. The company is the first in the U.S. to electrify its operations, offering renewable thermal energy by installing electric boilers, industrial-scale heat pumps, and thermal storage at its central facilities starting in Boston and Cambridge, with its other districts to follow.

Vicinity Energy centrally produces and distributes steam, hot water, and chilled water to over 230 million square feet of building space nationwide. To offer cost-competitive, renewable thermal energy to its customers, Vicinity will leverage and build upon its existing infrastructure, including its extensive network of underground pipes, electric substations, and transmission lines, which are notoriously hard to site and permit. Further, Vicinity has access to renewable power through the electric grid versus commercial buildings that purchase retail power, typically 2 to 3 times more expensive. Coupling the existing infrastructure with favorable pricing, Vicinity’s innovative approach to electrifying its operations will provide customers with a cost-effective decarbonization tool to meet sustainability goals without expensive onsite retrofits or significant capital investments.

Vicinity’s first electric asset will enter service in late 2024. At that time, the company will procure electricity from renewable, carbon-free energy sources such as wind, solar, and hydro to generate eSteam™.

By electrifying its operations and offering renewable thermal, eSteam™’s benefits include:

  • The ability to leverage district energy with guaranteed carbon-free emissions
  • Total flexibility in the amount selected and the renewable electricity source used to produce eSteam™
  • An affordable, cost-effective energy option to achieve sustainability targets
  • Carbon-neutral energy without substantial capital investments or ongoing, in-building
    maintenance of equipment
  • Additional potential points for LEED® and ENERGY STAR® certifications
  • Continued reliability and resiliency from the district energy system

Vicinity’s eSteam™ will provide customers with another option to cleanly heat and cool their buildings. Commercial buildings will no longer need natural gas boilers, eliminating unregulated gas stacks and unmonitored carbon emissions in our neighborhoods, reducing carbon and improving overall air quality.

“We’re thrilled to be the first district energy company in the United States to bring renewable thermal energy to our customers. Our operations are incredibly flexible, so we can quickly pivot to electrification and offer an innovative, affordable, carbon-free path for commercial building owners with eSteam™,” said Bill DiCroce, president and chief executive officer of Vicinity Energy. “This is game-changing for our communities.”

“We applaud the aggressive efforts of Vicinity Energy to decarbonize their Boston steam system,” says John Cleveland, Senior Advisor to the Boston Green Ribbon Commission. Vicinity Energy CEO Bill DiCroce has been a long-term member of the Commission. “Success on this front will make a major contribution to Boston’s goal of carbon neutrality by 2050 and set a bold example for other district energy systems across the country. It is a great example of what can be accomplished with public-private alignment.”

“There’s no place for gas in a climate-safe future,” said Andee Krasner, on behalf of Mothers Out Front – Boston. “We are excited Vicinity Energy plans to transition away from natural gas
to renewable, clean energy, which will enable commercial buildings to reduce carbon emissions and improve air quality in our communities.”

“Since we announced our commitment to net zero in the fall of 2020, we have evaluated many technical options and conducted numerous feasibility studies to develop a robust, executable Clean Energy Future roadmap,” states Kevin Hagerty, chief technical officer of Vicinity Energy. “We are procuring equipment today to make renewable thermal energy a reality within the next 24 months in Boston and Cambridge. And we’re not stopping there. We’ll be electrifying and introducing eSteam™ in other districts and continuing to innovate to meet decarbonization goals.”

“In cities like Boston and Cambridge, buildings account for nearly 70% of all greenhouse gas emissions,” said Matt O’Malley, Vicinity’s first-ever chief sustainability officer. “Vicinity is uniquely poised to serve as a national leader in building decarbonization. The time for action is now. Our customers want it, our cities are asking for it, and our planet demands it.”

About Vicinity Energy

Vicinity Energy is a clean energy company that owns and operates an extensive portfolio of district energy systems across the United States. Vicinity produces and distributes reliable, clean steam, hot water, and chilled water to over 250 million square feet of building space nationwide. Vicinity continuously invests in its infrastructure and the latest technologies to accelerate the decarbonization of commercial and institutional buildings in city centers. Vicinity is committed to achieving net zero carbon across its portfolio by 2050. To learn more, visit https://www.vicinityenergy.us or follow us on LinkedIn, Twitter, Instagram, or Facebook.

Media Contact

Vicinity Energy
Sara DeMille
Marketing and Communications
857-955-5073
sara.demille@vicinityenergy.us

VRF vs. district energy: the best way to heat and cool your facility

Modern commercial building managers and landlords have more to consider than ever when it comes to selecting an HVAC solution for their facilities. While energy efficiency, reliability, and cost-effectiveness are still of major importance, factors like sustainability and maximizing circulation due to health concerns are critical considerations as well. In order to stay competitive and attract desirable tenants, facility owners and managers need to look at the full picture when choosing a temperature control solution for their properties.

Two of the most often-considered solutions for building space heating and cooling are Variable Refrigerant Flow (VRF) and district energy. They both offer unique strengths and risks, and a careful analysis of both is necessary to make the smartest decision for your specific situation.

Variable Refrigerant Flow (VRF) systems

VRF is a refrigerant based heating and cooling system that utilizes a central outdoor condenser to feed multiple indoor evaporators. There are two main reasons a developer might choose to go with a VRF system: zoning controls and ductwork. VRF allows for more precise zoning controls, meaning if you need to heat or cool rooms to drastically different temperatures, VRF might be a good choice. Because VRF uses a central outdoor condenser, it also means there is less indoor equipment needed, such as utilizing separate window AC units for every room. This also keeps things quieter indoors.

There are several considerations to keep in mind about VRF systems, however:

  • Capital costs: VRF systems require upfront capital costs to install. Additionally, the average life of a compressor is about 10-15 years, and they range in costs from $5k to $15k in commercial buildings. This means that every 10-15 years, you’ll need to invest more capital to replace multiple compressors.
  • Maintenance: VRF systems consist of multiple complex pieces of equipment which require qualified HVAC mechanics to repair and maintain. This means either keeping HVAC technicians on staff or hiring a vendor each time maintenance or repairs are required.
  • Electricity reliance: VRF systems require electricity to run, which exposes buildings to multiple risks:
    • Buildings are at the mercy of sometimes volatile electricity rates and policy changes that may drive those rates up in the future.
    • Many buildings are billed based on peak electricity usage rates – essentially usage during the hottest and coldest days of the year. VRF can drive up peak demand (and costs) dramatically.
    • In the event of a loss of electricity, such as during a storm, the building would lose heating and cooling as well, which is dangerous to occupants, especially in very warm or cold climates, and could damage equipment and assets in the building.
  • Safety hazards: VRF systems require onsite use of potentially toxic refrigerants, which poses a safety risk to occupants of the building.
  • Space demand: VRF systems are normally housed on rooftops, which precludes that space from being used for building amenities, such as lounges, gardens, or rooftop pools. Additionally, there is a misconception that VRF systems do not require ductwork. Ductwork is certainly required to ensure safe air cycling in a building, especially as a result of COVID-inspired code changes to keep building occupants safe.
  • Reduced structural/building envelope integrity: VRF systems require roof penetration, which exposes the building to potential leaks or other structural issues.

District energy

District energy is a form of energy delivery in which steam and/or chilled water are generated at a central facility and then distributed through a network of underground pipes to buildings, rather than those buildings using onsite boilers or chillers that use fossil fuels. Entirely different from VRF technology, district energy has its own set of considerations when planning for your building’s heating and cooling needs.

There are several attributes to district energy that are worth considering:

  • Reliability: District systems are a great source of reliable energy, whether heating or cooling. The robust underground steel-encased pipes of a district network are reliable even in severe weather, and district energy systems maintain 99.99% uptime. Additionally, because its central facilities are fueled by multiple sources and have bult-in redundancies, reliable district energy cooling and heating is available even in the event of electrical losses. This is critical for the wellbeing of occupants and the protection of sensitive assets and equipment, especially for mission-critical facilities like hospitals, public safety facilities or laboratories.
  • No upfront capital costs: Because district energy does not require cooling or heating equipment onsite, there are typically no upfront costs associated with connecting to a district energy system – unlike the high upfront capital costs required for boilers, chillers, and cooling towers. Many district energy providers are even willing to invest in connecting a building to the district system and will cover the cost of any street repairs and beautification that comes up along the way. Often, existing ductwork in a commercial building can be retrofitted to accommodate district energy.
  • Scalability: District energy can be introduced gradually, if desired. Floors or areas of a building can be added one at a time. It is also possible to submeter for tenants, contrary to common misconception.
  • No rooftop penetration/space demand: District energy does not require rooftop chillers or compressors, freeing up rooftop space for amenities, a solar array, or other storage or equipment needs. This also means no rooftop penetration, which can reduce risk of damage due to a compromised building envelope.
  • Energy savings: Because district energy does not rely on electricity, building peak usage would be much lower than with VRF or installing electric units. That means that variable loads for heating or cooling would be drastically reduced, creating a flat load profile with lower demand charges.
  • Environmental (and financial) benefits: The reduced electricity demand would make a building eligible for more rebates and tax incentives. In some cases, the U.S. Green Building Council also assigns more LEED points to buildings that use district energy.

To summarize, it’s important to consider your reliability needs, ability to make an upfront capital investment, long-term maintenance needs, and sustainability/incentive goals when selecting the right HVAC system for your commercial building space. If you’re looking for some inspiration, click here to check out how other facilities are approaching their heating and cooling needs, from museums, to hospitals, to laboratories, and beyond.

A clean energy future is in our grasp

Clean Energy Future Infographic

By taking action and implementing a host of innovative energy strategies and technologies, Vicinity is leading the way to building decarbonization.

The path to a greener future: electrifying district energy in Boston and Cambridge

Massachusetts is estimated to experience more and more 90+°F days each year, along with increased precipitation, flooding, and rising sea levels. This kind of drastic climate change threatens the health, safety and long-term well-being of our communities.

Recognizing that climate related impacts are directly tied to conventional fossil fuel use and rising greenhouse gas emissions, Massachusetts has bold plans in place to dramatically cut carbon. One of the Commonwealth’s biggest initiatives in its decarbonization roadmap is electrification – a move to leverage the electric grid’s growing adoption of more renewable sources (like offshore wind and solar) to power, heat and cool commercial buildings.

Electrification: the key to achieving Massachusetts’ carbon reduction goals

As part of its Clean Energy and Climate Plan (CECP), the Commonwealth of Massachusetts has a goal to decarbonize and reduce greenhouse gas emissions by 50% of its 1990 baseline by 2030 and reach net carbon zero by 2050. Electrification has been identified as the key tactic to meet this goal, and Boston aims to electrify 300-400 million square feet of commercial space.

However, substituting combustion-fueled technologies (like on site gas boilers and chillers) for electric technologies in commercial buildings is an expensive and time-consuming endeavor. So how can the Commonwealth’s goals be achieved quickly without incurring huge financial burdens on individual building owners? Thankfully, Massachusetts has a tool in its carbon-cutting toolbox: district energy.

Beneath the streets of both Boston and Cambridge, a robust network of pipes is delivering clean steam to over 230 commercial buildings, totaling 65 million square feet of building space – the equivalent of 54 Prudential Towers. Owned and operated by Vicinity Energy, the Boston/Cambridge district energy system generates and distributes clean, low-carbon steam used for heating, cooling, hot water, humidification and sterilization to some of the area’s premier hospitals, biotechnology and pharmaceutical companies, universities, hotels and entertainment venues, commercial space, and government facilities.

Through its Kendall Square cogeneration facility – the largest combined heat and power (CHP) plant in the New England area – Vicinity’s operations are already avoiding over 165,000 tons of CO 2 emissions annually – the equivalent of removing 35,000 cars from the roads each year. While this is certainly a big contribution, the company wants to do even more to reduce its carbon footprint. In line with the Commonwealth’s goal, Vicinity has a commitment to achieve net zero carbon emissions across its operations by 2050.

Vicinity recently integrated biogenic fuel into its fuel mix and is also exploring and testing large-scale use of batteries, hydrogen, and other low-carbon options which will have an immediate effect on the carbon footprint of the businesses we serve. Vicinity has also invested over $110 million in a series of green steam projects to improve efficiencies and further reduce environmental impacts in the Boston and Cambridge area.

While Vicinity’s district energy system is already highly efficient, the company is uniquely positioned to make an even greater positive impact on Massachusetts’ carbon goals. The solution is simple: install large-scale electric boilers and consume renewable energy from the grid as it becomes more readily available. Doing this will benefit each and every building connected to the district energy loop at a fraction of the cost to building owners. Representing 20% of the cities’ total electrification target, thermal electrification of the district system is the solution for rapid and cost-effective building decarbonization. By electrifying our systems, we can – in one swoop – bring Boston and Cambridge much closer to their goal.

The next energy inflection point

“The time to act on electrification is now… A new customer is added to the U.S. gas distribution system every minute – more than 400,000 new gas customers per year. U.S. utilities are adding approximately 10,000 miles of new pipelines and replacing 5,600 miles of existing gas mains annually. These new investments are being amortized over the next 30-80 years, long after we need to stop burning fossil fuels.” –Stephanie Greene, Principal, Building Electrification at Rocky Mountain Institute

The biggest opportunity to green and decarbonize buildings in Boston and Cambridge is to electrify the district energy system. Since the inception of district energy in the late 1800s, district energy systems have routinely migrated to cleaner, more efficient fuel sources. Now we’re at another inflection point and district energy is uniquely positioned to lead through this next energy transition to clean, renewable fuels.

The use of electric boilers and heat pumps in district energy systems is a proven solution. Today, the Stockholm district energy system in Sweden, for instance, uses 660 MW of heat pumps and 300 MW of electric boilers to generate steam, which is distributed throughout the city. It is estimated that altogether, Stockholm’s district energy system has reduced sulfur oxide and particulate emissions by two-thirds since 1986. Vicinity is the first district energy company in the US to put forth a similar plan and intends to convert its existing natural gas infrastructure to electric at its central Kendall cogeneration facility. Sitting next to a major electric substation, Vicinity can import renewable electrons and instantly decarbonize its steam. It’s the “easy switch” for electrification.

Vicinity currently plans to install 100-150 MW of electric boiler capacity by 2028 at Kendall, which can serve up to 75% of its current steam production requirements, or 45 million square feet of building space in Boston and Cambridge. Vicinity’s electrification plan is multi-pronged and will include:

  • Using existing waste energy from heat or river water in order to electrify 10% of its steam load, which is equivalent to 6 million square feet;
  • Installing large-scale electric boilers at the Kendall facility that will convert electricity to steam; and
  • Constructing an additional pipe crossing under the Charles River to connect Boston’s peak winter heating demand with steam generated at the electrified Kendall facility.

This plan will not only support both cities’ goals, it will also eliminate the challenge of property owners needing to retrofit individual buildings. Vicinity’s existing network of 65 million square feet of buildings will automatically benefit from this “easy switch” – saving businesses significant capital and allowing them to instead invest in efficiency and growth.

Looking to the future

Vicinity’s goal, in alignment with the Commonwealth of Massachusetts, is to decarbonize. Electrifying the district energy system is the fastest and most cost-effective way to help achieve this shared goal. Fossil fuels are not sustainable. Through advances in policy and leveraging the unique assets we already have, the Commonwealth is poised to lead the charge in our Nation’s efforts to reduce carbon emissions.